Performance of a biohydrogen solid oxide fuel cell

被引:12
|
作者
Razbani, Omid [1 ]
Assadi, Mohsen [1 ]
机构
[1] Univ Stavanger, Dept Petr Engn, N-4036 Stavanger, Norway
关键词
SOFC; CFD modeling; Biohydrogen; Experimental set up; Water gas shift reaction; HYDROGEN-PRODUCTION; SIMULATION; PROSPECTS; GAS;
D O I
10.1016/j.ijhydene.2013.08.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For solid oxide fuel cells (SOFCs), biohydrogen is an ideal fuel, which introduces a clean renewable energy source to a highly efficient energy conversion technology with minimum complications. The performance of a SOFC working with biohydrogen, and the effects of fuel composition, working temperature, load, and air utilization are less well understood. In this study a comprehensive numerical model was employed to investigate the biohydrogen fueled SOFC in different working conditions. Direct electrochemical oxidation of H-2 and CO and water gas shift reaction (WGSR) were considered in the model. An experimental set up was built to verify the simulation results. Results from the numerical model were validated against experimental polarization curves and cell temperature measurements. The results showed how different parameters affect the performance of a biohydrogen SOFC and how different working conditions can be selected to meet certain criteria. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:13781 / 13791
页数:11
相关论文
共 50 条
  • [1] Modeling the performance of a tubular solid oxide fuel cell
    Bharadwaj, A.
    Archer, D. H.
    Rubin, E. S.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2005, 2 (01): : 38 - 44
  • [2] Experimental investigation on performance of solid oxide fuel cell
    Senpaku Gijutsu Kenkyusho Hokoku, 1 (1-24):
  • [3] Review of cell performance in solid oxide fuel cells
    Lyu, Yiming
    Xie, Jintao
    Wang, Dingbiao
    Wang, Jiarao
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (17) : 7184 - 7207
  • [4] Review of cell performance in solid oxide fuel cells
    Yiming Lyu
    Jintao Xie
    Dingbiao Wang
    Jiarao Wang
    Journal of Materials Science, 2020, 55 : 7184 - 7207
  • [5] Parametric study of solid oxide fuel cell performance
    Ni, Meng
    Leung, Michael K. H.
    Leung, Dennis Y. C.
    ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (05) : 1525 - 1535
  • [6] Altitude Effects on Solid Oxide Fuel Cell Performance
    Chakravarthula, Venkata Adithya
    Roberts, Rory A.
    Wolff, Mitch
    14TH INTERNATIONAL ENERGY CONVERSION ENGINEERING CONFERENCE, 2016,
  • [7] Performance of a solid oxide fuel cell utilizing hydrogen sulfide as fuel
    Liu, M
    He, P
    Luo, JL
    Sanger, AR
    Chuang, KT
    JOURNAL OF POWER SOURCES, 2001, 94 (01) : 20 - 25
  • [8] Performance analysis of solid oxide fuel cell using reformed fuel
    Verma, J. K.
    Verma, A.
    Ghoshal, A. K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) : 9511 - 9518
  • [9] Performance of intermediary temperature solid oxide fuel cell with methanol as fuel
    Bi, ZH
    Cheng, MJ
    Wu, HJ
    Dong, YL
    Yi, BL
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2005, 26 (06): : 1110 - 1113
  • [10] Performance evaluation and optimization of a solid oxide fuel cell system combined with solid oxide electrolysis cell
    Cheng, Tianliang
    Jiang, Jianhua
    Xu, Mengxue
    Li, Xi
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 2473 - 2477