Primitive stable representations in higher rank semisimple Lie groups

被引:2
作者
Kim, Inkang [1 ]
Kim, Sungwoon [2 ]
机构
[1] Korea Inst Adv Study, Sch Math, Hoegiro 85, Seoul 02455, South Korea
[2] Jeju Natl Univ, Dept Math, 102 Jejudaehak Ro, Jeju 63243, South Korea
来源
REVISTA MATEMATICA COMPLUTENSE | 2021年 / 34卷 / 03期
基金
新加坡国家研究基金会;
关键词
Primitive stable; Morse action; Positive representation; CUBIC DIFFERENTIALS; CONVEX; GEOMETRY; DYNAMICS; SYSTEMS; SURFACE; SPACES; SETS;
D O I
10.1007/s13163-020-00372-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study primitive stable representations of free groups into higher rank semisimple Lie groups and their properties. Let Sigma be a compact, connected, orientable surface (possibly with boundary) of negative Euler characteristic. We first verify sigma(mod)-regularity for convex projective structures and positive representations. Then we show that the holonomies of convex projective structures and positive representations on Sigma are all primitive stable if Sigma has one boundary component.
引用
收藏
页码:715 / 745
页数:31
相关论文
共 36 条
[1]  
[Anonymous], 1994, Progr. Math.
[2]  
[Anonymous], ARXIV14037671
[3]  
BALLMANN W., 1985, PROGR MATH, V61, DOI [DOI 10.1007/978-1-4684-9159-3, 10.1007/978-1-4684-9159-3]
[4]  
Benoist Y, 1997, GEOM FUNCT ANAL, V7, P1, DOI 10.1007/PL00001613
[5]  
Benoist Y, 2003, PUBL MATH, V97, P181, DOI 10.1007/s10240-003-0012-4
[6]   Automorphisms of convex cones [J].
Benoist, Y .
INVENTIONES MATHEMATICAE, 2000, 141 (01) :149-193
[7]  
BENOIST Y., 2004, Algebraic groups and arithmetic, P339
[8]  
Benoist Y, 2014, J DIFFER GEOM, V98, P1
[9]   Cubic differentials and finite volume convex projective surfaces [J].
Benoist, Yves ;
Hulin, Dominique .
GEOMETRY & TOPOLOGY, 2013, 17 (01) :595-620
[10]  
Benzecri J. P., 1960, Bull. Soc. Math. France, V88, P229