The 3-way flower intersection problem for Steiner triple systems

被引:0
|
作者
Amjadi, Hanieh [1 ]
Soltankhah, Nasrin [1 ]
机构
[1] Alzahra Univ, Fac Math Sci, Tehran, Iran
基金
美国国家科学基金会;
关键词
Steiner triple system; 3-way intersection; 3-way flower intersection; Pairwise balanced design; Group divisible design; Latin square;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The flower at a point x in a Steiner triple system (X, B) is the set of all triples containing x. Denote by J(F)(3)(r) the set of all integers k such that there exists a collection of three STS (2r + 1) mutually intersecting in the same set of k + r triples, r of them being the triples of a common flower. In this article we determine the set J(F)(3)(r) for any positive integer r equivalent to 0, 1 (mod 3) (only some cases are left undecided for r = 6, 7, 9, 24), and establish that J(F)(3)(r) = I-F(3)(r) for r equivalent to 0, 1 (mod 3) where I-F(3)(r) = {0, 1,..., 2r(r-1)/3 - 8, 2r(r-1)/3 - 6, 2r(r-1)/3}.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] High-girth Steiner triple systems
    Kwan, Matthew
    Sah, Ashwin
    Sawhney, Mehtaab
    Simkin, Michael
    ANNALS OF MATHEMATICS, 2024, 200 (03) : 1059 - 1156
  • [42] STEINER TRIPLE SYSTEMS WITHOUT PARALLEL CLASSES
    Bryant, Darryn
    Horsley, Daniel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 693 - 696
  • [43] Some new perfect Steiner triple systems
    Grannell, MJ
    Griggs, TS
    Murphy, JP
    JOURNAL OF COMBINATORIAL DESIGNS, 1999, 7 (05) : 327 - 330
  • [44] Small Embeddings of Partial Steiner Triple Systems
    Horsley, Daniel
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (08) : 343 - 365
  • [45] Trinal Decompositions of Steiner Triple Systems into Triangles
    Lindner, Charles C.
    Meszka, Mariusz
    Rosa, Alexander
    JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (05) : 204 - 211
  • [46] Watermark design based on Steiner triple systems
    Yang, Zhi-Fang
    Chiou, Shyh-Shin
    Lee, Jun-Ting
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 72 (03) : 2177 - 2194
  • [47] On 6-sparse Steiner triple systems
    Forbes, A. D.
    Grannell, M. J.
    Griggs, T. S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (02) : 235 - 252
  • [48] Watermark design based on Steiner triple systems
    Zhi-Fang Yang
    Shyh-Shin Chiou
    Jun-Ting Lee
    Multimedia Tools and Applications, 2014, 72 : 2177 - 2194
  • [49] Steiner triple systems with disjoint or intersecting subsystems
    Colbourn, CJ
    Oravas, MA
    Rees, RS
    JOURNAL OF COMBINATORIAL DESIGNS, 2000, 8 (01) : 58 - 77
  • [50] The classification of Steiner triple systems on 27 points with 3-rank 24
    Jungnickel, Dieter
    Magliveras, Spyros S.
    Tonchev, Vladimir D.
    Wassermann, Alfred
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (04) : 831 - 839