The 3-way flower intersection problem for Steiner triple systems

被引:0
|
作者
Amjadi, Hanieh [1 ]
Soltankhah, Nasrin [1 ]
机构
[1] Alzahra Univ, Fac Math Sci, Tehran, Iran
基金
美国国家科学基金会;
关键词
Steiner triple system; 3-way intersection; 3-way flower intersection; Pairwise balanced design; Group divisible design; Latin square;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The flower at a point x in a Steiner triple system (X, B) is the set of all triples containing x. Denote by J(F)(3)(r) the set of all integers k such that there exists a collection of three STS (2r + 1) mutually intersecting in the same set of k + r triples, r of them being the triples of a common flower. In this article we determine the set J(F)(3)(r) for any positive integer r equivalent to 0, 1 (mod 3) (only some cases are left undecided for r = 6, 7, 9, 24), and establish that J(F)(3)(r) = I-F(3)(r) for r equivalent to 0, 1 (mod 3) where I-F(3)(r) = {0, 1,..., 2r(r-1)/3 - 8, 2r(r-1)/3 - 6, 2r(r-1)/3}.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Automorphism groups of Steiner triple systems
    Doyen, Jean
    Kantor, William M.
    ALGEBRAIC COMBINATORICS, 2022, 5 (04): : 593 - 608
  • [32] Russian doll search for the Steiner triple covering problem
    Ostergard, Patric R. J.
    Vaskelainen, Vesa P.
    OPTIMIZATION LETTERS, 2011, 5 (04) : 631 - 638
  • [33] Russian doll search for the Steiner triple covering problem
    Patric R. J. Östergård
    Vesa P. Vaskelainen
    Optimization Letters, 2011, 5 : 631 - 638
  • [34] Maximum genus embeddings of Steiner triple systems
    Grannell, MJ
    Griggs, TS
    Sirán, J
    EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (3-4) : 401 - 416
  • [35] Steiner triple systems of order 15 and their codes
    Tonchev, VD
    Weishaar, RS
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 58 (01) : 207 - 216
  • [36] STEINER TRIPLE SYSTEMS WITH HIGH CHROMATIC INDEX
    Bryant, Darryn
    Colbourn, Charles J.
    Horsley, Daniel
    Wanless, Ian M.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (04) : 2603 - 2611
  • [37] STEINER TRIPLE SYSTEMS OF ORDER 21 WITH SUBSYSTEMS
    Heinlein, Daniel
    Ostergard, Patric R. J.
    GLASNIK MATEMATICKI, 2023, 58 (02) : 233 - 245
  • [38] Distance and fractional isomorphism in Steiner triple systems
    Forbes A.D.
    Grannell M.J.
    Griggs T.S.
    Rendiconti del Circolo Matematico di Palermo, 2007, 56 (1) : 17 - 32
  • [39] Point Code Minimum Steiner Triple Systems
    Colbourn C.J.
    Ling A.C.H.
    Designs, Codes and Cryptography, 1998, 14 (2) : 141 - 146
  • [40] Sparse Steiner triple systems of order 21
    Kokkala, Janne I.
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (02) : 75 - 83