The 3-way flower intersection problem for Steiner triple systems

被引:0
|
作者
Amjadi, Hanieh [1 ]
Soltankhah, Nasrin [1 ]
机构
[1] Alzahra Univ, Fac Math Sci, Tehran, Iran
基金
美国国家科学基金会;
关键词
Steiner triple system; 3-way intersection; 3-way flower intersection; Pairwise balanced design; Group divisible design; Latin square;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The flower at a point x in a Steiner triple system (X, B) is the set of all triples containing x. Denote by J(F)(3)(r) the set of all integers k such that there exists a collection of three STS (2r + 1) mutually intersecting in the same set of k + r triples, r of them being the triples of a common flower. In this article we determine the set J(F)(3)(r) for any positive integer r equivalent to 0, 1 (mod 3) (only some cases are left undecided for r = 6, 7, 9, 24), and establish that J(F)(3)(r) = I-F(3)(r) for r equivalent to 0, 1 (mod 3) where I-F(3)(r) = {0, 1,..., 2r(r-1)/3 - 8, 2r(r-1)/3 - 6, 2r(r-1)/3}.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Representing Graphs in Steiner Triple Systems
    Dan Archdeacon
    Terry Griggs
    Costas Psomas
    Graphs and Combinatorics, 2014, 30 : 255 - 266
  • [22] Independent sets in Steiner triple systems
    Forbes, AD
    Grannell, MJ
    Griggs, TS
    ARS COMBINATORIA, 2004, 72 : 161 - 169
  • [23] Representing Graphs in Steiner Triple Systems
    Archdeacon, Dan
    Griggs, Terry
    Psomas, Costas
    GRAPHS AND COMBINATORICS, 2014, 30 (02) : 255 - 266
  • [24] The Steiner triple systems of order 19
    Kaski, P
    Östergård, PRJ
    MATHEMATICS OF COMPUTATION, 2004, 73 (248) : 2075 - 2092
  • [25] On Steiner triple systems and perfect codes
    Näslund, M
    ARS COMBINATORIA, 1999, 53 : 129 - 132
  • [26] Embedding hypertrees into steiner triple systems
    Elliott, Bradley
    Rodl, Vojtech
    JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (02) : 82 - 105
  • [27] ENUMERATION OF STEINER TRIPLE SYSTEMS WITH SUBSYSTEMS
    Kaski, Petteri
    Ostergard, Patric R. J.
    Popa, Alexandru
    MATHEMATICS OF COMPUTATION, 2015, 84 (296) : 3051 - 3067
  • [28] An update on the existence of Kirkman triple systems with steiner triple systems as subdesigns
    Dukes, Peter J.
    Lamken, Esther R.
    JOURNAL OF COMBINATORIAL DESIGNS, 2022, 30 (08) : 581 - 608
  • [29] Cancellative hypergraphs and Steiner triple systems
    Liu, Xizhi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 167 : 303 - 337
  • [30] Rigid Steiner Triple Systems Obtained from Projective Triple Systems
    Grannell, M. J.
    Knor, M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (07) : 279 - 290