ADER finite volume schemes for nonlinear reaction-diffusion equations

被引:49
作者
Toro, Eleuterio F. [1 ]
Hidalgo, Arturo [2 ]
机构
[1] Univ Trent, Dept Civil & Environm Engn, Lab Appl Math, Trento, Italy
[2] Univ Politecn Madrid, ETS Ingenieros Minas, Dept Matemat Aplicada & Metodos Informat, Madrid, Spain
关键词
Diffusion; Source terms; Finite volumes; Godunov's method; Derivative Riemann problem; ADER; Arbitrary accuracy; High-order methods; ASYMPTOTIC-BEHAVIOR; ELEMENT-METHOD; POROUS-MEDIA; FLOW;
D O I
10.1016/j.apnum.2007.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct finite volume schemes of arbitrary order of accuracy in space and time for solving nonlinear reaction-diffusion partial differential equations. The numerical schemes, written in conservative form, result from extending the Godunov and the ADER frameworks, both originally developed for approximating solutions to hyperbolic equations. The task is to define numerical fluxes and numerical sources. In the ADER approach, numerical fluxes are computed from solutions to the Derivative Riemann Problem (DRP) (or generalized Riemann problem, or high-order Riemann problem), the Cauchy problem in which the initial conditions either side of the interface are smooth functions, polynomials of arbitrary degree, for example. We propose, and systematically asses, a general DRP solver for nonlinear reaction-diffusion equations and construct corresponding finite volume schemes of arbitrary order of accuracy. Schemes of 1st to 10-th order of accuracy in space and time are implemented and systematically assessed, with particular attention paid to their convergence rates. Numerical examples are also given. (C) 2008 IMACS. Published by Elsevier B.V. All fights reserved.
引用
收藏
页码:73 / 100
页数:28
相关论文
共 50 条
[11]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF A NON-LINEAR DIFFUSION EQUATION [J].
BERTSCH, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (01) :66-76
[12]   On WAF-type schemes for multidimensional hyperbolic conservation laws [J].
Billett, SJ ;
Toro, EF .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 130 (01) :1-24
[13]   Finite speed of propagation in porous media by mass transportation methods [J].
Carrillo, JA ;
Gualdani, MP ;
Toscani, G .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (10) :815-818
[14]   THE PIECEWISE PARABOLIC METHOD (PPM) FOR GAS-DYNAMICAL SIMULATIONS [J].
COLELLA, P ;
WOODWARD, PR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 54 (01) :174-201
[15]   Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws [J].
Dumbser, Michael ;
Enaux, Cedric ;
Toro, Eleuterio F. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (08) :3971-4001
[16]   Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems [J].
Dumbser, Michael ;
Kaeser, Martin ;
Titarev, Vladimir A. ;
Toro, Eleuterio F. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) :204-243
[17]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .4. NONLINEAR PROBLEMS [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1729-1749
[18]  
ERIKSSON K, 1996, DIFFERENTIAL EQUATIO
[19]  
Eymard R, 2000, HDBK NUM AN, V7, P713
[20]   The finite volume method for Richards equation [J].
Eymard, R ;
Gutnic, M ;
Hilhorst, D .
COMPUTATIONAL GEOSCIENCES, 1999, 3 (3-4) :259-294