The responsibility weighted Mahalanobis kernel for semi-supervised training of support vector machines for classification

被引:28
|
作者
Reitmaier, Tobias [1 ]
Sick, Bernhard [1 ]
机构
[1] Univ Kassel, Intelligent Embedded Syst Lab, D-34121 Kassel, Germany
关键词
Support vector machine; Pattern classification; Kernel function; Responsibility weighted Mahalanobis kernel; Semi-supervised learning; MANIFOLD REGULARIZATION;
D O I
10.1016/j.ins.2015.06.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Kernel functions in support vector machines (SVM) are needed to assess the similarity of input samples in order to classify these samples, for instance. Besides standard kernels such as Gaussian (i.e., radial basis function, RBF) or polynomial kernels, there are also specific kernels tailored to consider structure in the data for similarity assessment. In this paper, we will capture structure in data by means of probabilistic mixture density models, for example Gaussian mixtures in the case of real-valued input spaces. From the distance measures that are inherently contained in these models, e.g., Mahalanobis distances in the case of Gaussian mixtures, we derive a new kernel, the responsibility weighted Mahalanobis (RWM) kernel. Basically, this kernel emphasizes the influence of model components from which any two samples that are compared are assumed to originate (that is, the "responsible" model components). We will see that this kernel outperforms the RBF kernel and other kernels capturing structure in data (such as the LAP kernel in Laplacian SVM) in many applications where partially labeled data are available, i.e., for semi-supervised training of SVM. Other key advantages are that the RWM kernel can easily be used with standard SVM implementations and training algorithms such as sequential minimal optimization, and heuristics known for the parametrization of RBF kernels in a C-SVM can easily be transferred to this new kernel. Properties of the RWM kernel are demonstrated with 20 benchmark data sets and an increasing percentage of labeled samples in the training data. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:179 / 198
页数:20
相关论文
共 50 条
  • [1] The use of support vector machines in semi-supervised classification
    Bae, Hyunjoo
    Kim, Hyungwoo
    Shin, Seung Jun
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2022, 29 (02) : 193 - 202
  • [2] Semi-supervised support vector machines
    Bennett, KP
    Demiriz, A
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 368 - 374
  • [3] Semi-supervised support vector machines for unlabeled data classification
    Fung, G
    Mangasarian, OL
    OPTIMIZATION METHODS & SOFTWARE, 2001, 15 (01): : 29 - 44
  • [4] Semi-supervised support vector machines for data classification with uncertainty
    Ling, J
    Li, S
    ICEMS 2005: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-3, 2005, : 2278 - 2281
  • [5] Help-Training for semi-supervised support vector machines
    Adankon, Mathias M.
    Cheriet, Mohamed
    PATTERN RECOGNITION, 2011, 44 (09) : 2220 - 2230
  • [6] Semi-supervised multitemporal classification with support vector machines and genetic algorithms
    Ghoggali, Noureddine
    Melgani, Farid
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 2577 - 2580
  • [7] Semi-supervised Image Classification with Huberized Laplacian Support Vector Machines
    Khan, Inayatullah
    Roth, Peter M.
    Bais, Abdul
    Bischof, Horst
    2013 IEEE 9TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET 2013), 2013, : 205 - 210
  • [8] Semi-supervised Support Vector Machines Regression
    Zhu, Dingzhen
    Wang, Xin
    Chen, Heng
    Wu, Rui
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 2015 - +
  • [9] Distributed semi-supervised support vector machines
    Scardapane, Simone
    Fierimonte, Roberto
    Di Lorenzo, Paolo
    Panella, Massimo
    Uncini, Aurelio
    NEURAL NETWORKS, 2016, 80 : 43 - 52
  • [10] Weighted Least Squares Support Vector Machine for Semi-supervised Classification
    Liu, Zhanwei
    Liu, Houquan
    Zhao, Zhikai
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 103 (01) : 797 - 808