CHARACTERIZATIONS OF JORDAN LEFT DERIVATIONS ON SOME ALGEBRAS

被引:6
作者
An, Guangyu [1 ]
Ding, Yana [1 ]
Li, Jiankui [1 ]
机构
[1] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
C*-algebra; Jordan left derivation; left derivable point; left separating point; BANACH-ALGEBRAS; OPERATOR-ALGEBRAS; RINGS; PROJECTIONS; CONTINUITY; PRODUCTS; LATTICES; MAPS;
D O I
10.1215/17358787-3599675
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear mapping delta from an algebra A into a left A-module M is called a Jordan left derivation if delta(A(2)) = 2A delta(A) for every A is an element of A. We prove that if an algebra A and a left A-module M satisfy one of the following conditions (1) A is a C*-algebra and M is a Banach left A-module; (2) A = Alg L with boolean AND{L_ : L is an element of J(L)} = (0) and M = B(X); and (3) A is a commutative subspace lattice algebra of a von Neumann algebra B and M = B (H) then every Jordan left derivation from A into M is zero. delta is called left derivable at G is an element of A if delta(AB) = A delta(B) + B delta(A) for each A, B is an element of A with AB = G. We show that if A is a factor von Neumann algebra, G is a left separating point of A or a nonzero self-adjoint element in A, and delta is left derivable at G, then delta 0.
引用
收藏
页码:466 / 481
页数:16
相关论文
共 24 条
[1]   CHARACTERIZING JORDAN MAPS ON C*-ALGEBRAS THROUGH ZERO PRODUCTS [J].
Alaminos, J. ;
Bresar, J. M. ;
Extremera, J. ;
Villena, A. R. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 :543-555
[2]  
[Anonymous], PURE APPL MATH
[3]   On representation of elements of a von Neumann algebra in the form of finite sums of products of projections [J].
Bikchentaev, AM .
SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (01) :24-34
[4]   ON LEFT DERIVATIONS AND RELATED MAPPINGS [J].
BRESAR, M ;
VUKMAN, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (01) :7-16
[5]   JORDAN DERIVATIONS ON PRIME-RINGS [J].
BRESAR, M ;
VUKMAN, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (03) :321-322
[6]  
Bresar M., 1988, B AUST MATH SOC, V104, P1003, DOI [10.2307/2047580.467, DOI 10.2307/2047580]
[7]   CONTINUITY OF SEMI-NORMS ON OPERATOR ALGEBRAS [J].
CUNTZ, J .
MATHEMATISCHE ANNALEN, 1976, 220 (02) :171-183
[8]   JORDAN DERIVATIONS ON RINGS [J].
CUSACK, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 53 (02) :321-324
[9]  
Dales H.G., 2000, London Math. Soc. Monogr. Ser., V24
[10]  
Dales HG, 1998, STUD MATH, V128, P19