Secure PUF-based Authentication and Key Exchange Protocol using Machine Learning

被引:4
作者
Ali-Pour, Amir [1 ,2 ]
Afghah, Fatemeh [1 ]
Hely, David [3 ]
Beroulle, Vincent [2 ]
Di Natale, Giorgio [4 ]
机构
[1] Clemson Univ, Elect & Comptuer Engn Dept, Clemson, SC 29634 USA
[2] Univ Grenoble Alpes, Grenoble INP, LCIS, F-26000 Grenoble, France
[3] Univ Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France
[4] Univ Grenoble Alpes, CNRS, Grenoble INP, TIMA, F-38000 Grenoble, France
来源
2022 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2022) | 2022年
基金
美国国家科学基金会;
关键词
Physically Unclonable Function; Encryption Key; Repetition Code; Error Correction Codes;
D O I
10.1109/ISVLSI54635.2022.00086
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Error Correction Codes and Fuzzy Extractors (FE) using publicly available helper data are used to increase the reliability of the secret value generated from noisy sources such as Physically Unclonable Functions (PUFs). Publicly available helper data is, in turn, vulnerable against Helper Data manipulation attacks due to its correlation with the secret value. Instead of using helper data for FE-based error correction, we propose a locally recoverable repetition coding mechanism. Our proposed mechanism is based on sharing only the user's generated challenge values, which is inherently secure against machine learning and PUF cloning attacks. We evaluate the reliability of our method using simulated challenge response pairs (CRP)s captured from various XOR Arbiter PUF structures at different levels of noise embedded in the PUF CRP characteristic. We show for instance that in a scenario of using PUF with 10% error-rate, our method can successfully recover the encryption key with close to zero failure-rate with a repetition code length of 10 or higher.
引用
收藏
页码:386 / 389
页数:4
相关论文
共 18 条
  • [1] Ali Pour A., 2022, INT S QUALITY ELECT
  • [2] Strong PUF Enrollment with Machine Learning: A Methodical Approach
    Ali-Pour, Amir
    Hely, David
    Beroulle, Vincent
    Di Natale, Giorgio
    [J]. ELECTRONICS, 2022, 11 (04)
  • [3] Alkatheiri MS, 2017, 2017 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING, P174, DOI 10.1109/DESEC.2017.8073844
  • [4] Robust Fuzzy Extractors and Helper Data Manipulation Attacks Revisited: Theory versus Practice
    Becker, Georg T.
    [J]. IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2019, 16 (05) : 783 - 795
  • [5] A Modeling Attack Resistant Deception Technique for Securing Lightweight-PUF-Based Authentication
    Gu, Chongyan
    Chang, Chip-Hong
    Liu, Weiqiang
    Yu, Shichao
    Wang, Yale
    O'Neill, Maire
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2021, 40 (06) : 1183 - 1196
  • [6] Physical Unclonable Functions and Applications: A Tutorial
    Herder, Charles
    Yu, Meng-Day
    Koushanfar, Farinaz
    Devadas, Srinivas
    [J]. PROCEEDINGS OF THE IEEE, 2014, 102 (08) : 1126 - 1141
  • [7] Huang J.Q., 2018, 2018 14 IEEE INT C S, P1, DOI 10.1109/ICSICT.2018.8565728
  • [8] Idriss T, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON RFID TECHNOLOGY & APPLICATION (RFID-TA), P214, DOI 10.1109/RFID-TA.2017.8098893
  • [9] Khalafalla M, 2019, DES AUT TEST EUROPE, P204, DOI [10.23919/date.2019.8714862, 10.23919/DATE.2019.8714862]
  • [10] Majzoobi M., 2012, 2012 IEEE CS Security and Privacy Workshops (SPW 2012), P33, DOI 10.1109/SPW.2012.30