A weak Galerkin least-squares finite element method for div-curl systems

被引:16
|
作者
Li, Jichun [1 ]
Ye, Xiu [2 ]
Zhang, Shangyou [3 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
[2] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Weak Galerkin finite element methods; Div-curl problems; Polyhedral meshes; 2ND-ORDER ELLIPTIC PROBLEMS; DISCONTINUOUS GALERKIN; POLYTOPAL MESHES; EQUATIONS;
D O I
10.1016/j.jcp.2018.02.036
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 50 条
  • [41] A stabilizer free weak Galerkin finite element method on polytopal mesh: Part III
    Ye, Xiu
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 394
  • [42] A weak Galerkin finite element method for the Navier-Stokes equations
    Hu, Xiaozhe
    Mu, Lin
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 614 - 625
  • [43] Convergence and optimality of an adaptive modified weak Galerkin finite element method
    Xie, Yingying
    Cao, Shuhao
    Chen, Long
    Zhong, Liuqiang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (05) : 3847 - 3873
  • [44] A new weak Galerkin finite element method for elliptic interface problems
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    Zhao, Shan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 325 : 157 - 173
  • [45] A stabilizer free weak Galerkin finite element method for parabolic equation
    Al-Taweel, Ahmed
    Hussain, Saqib
    Wang, Xiaoshen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
  • [46] A weak Galerkin finite element method for the Navier-Stokes equations
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 : 442 - 457
  • [47] The weak Galerkin finite element method for the transport-reaction equation
    Zhang, Tie
    Zhang, Shangyou
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 410
  • [48] A weak Galerkin-mixed finite element method for the Stokes-Darcy problem
    Peng, Hui
    Zhai, Qilong
    Zhang, Ran
    Zhang, Shangyou
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (10) : 2357 - 2380
  • [49] A Weak Galerkin Finite Element Method for p-Laplacian Problem
    Ye, Xiu
    Zhang, Shangyou
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (02) : 219 - 233
  • [50] A Hybridized Weak Galerkin Finite Element Method for Incompressible Stokes Equations
    Zhang, Qianru
    Kuang, Haopeng
    Wang, Xiuli
    Zhai, Qilong
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (04) : 1012 - 1038