A weak Galerkin least-squares finite element method for div-curl systems

被引:16
|
作者
Li, Jichun [1 ]
Ye, Xiu [2 ]
Zhang, Shangyou [3 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
[2] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Weak Galerkin finite element methods; Div-curl problems; Polyhedral meshes; 2ND-ORDER ELLIPTIC PROBLEMS; DISCONTINUOUS GALERKIN; POLYTOPAL MESHES; EQUATIONS;
D O I
10.1016/j.jcp.2018.02.036
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 50 条
  • [21] Modified mixed least-squares finite element formulations for small and finite strain plasticity
    Igelbuescher, Maximilian
    Schwarz, Alexander
    Steeger, Karl
    Schroeder, Joerg
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 117 (01) : 141 - 160
  • [22] A Weak Galerkin Finite Element Method for the Maxwell Equations
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    Zhang, Shangyou
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (01) : 363 - 386
  • [23] Weak Galerkin finite element methods with and without stabilizers for H(div;ω)${\bf H}(\mbox{div}; \Omega )$-elliptic problems
    Kumar, Raman
    Deka, Bhupen
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (11):
  • [24] The weak Galerkin finite element method for Stokes interface problems with curved interface
    Yang, Lin
    Zhai, Qilong
    Zhang, Ran
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 98 - 122
  • [25] Weak Galerkin mixed finite element method for heat equation
    Zhou, Chenguang
    Zou, Yongkui
    Chai, Shimin
    Zhang, Qian
    Zhu, Hongze
    APPLIED NUMERICAL MATHEMATICS, 2018, 123 : 180 - 199
  • [26] Penalized Least-Squares Method for LQR Problem of Singular Systems
    Nosrati, Komeil
    Belikov, Juri
    Tepljakov, Aleksei
    Petlenkov, Eduard
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1251 - 1256
  • [27] A new weak Galerkin finite element method for the Helmholtz equation
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) : 1228 - 1255
  • [28] A HYBRIDIZED WEAK GALERKIN FINITE ELEMENT METHOD FOR THE BIHARMONIC EQUATION
    Wang, Chunmei
    Wang, Junping
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (02) : 302 - +
  • [29] A HYBRIDIZED WEAK GALERKIN FINITE ELEMENT METHOD FOR THE BIHARMONIC EQUATION
    Wang, Chunmei
    Wang, Junping
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (02) : 302 - 317
  • [30] Weak Galerkin finite element method for valuation of American options
    Zhang, Ran
    Song, Haiming
    Luan, Nana
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (02) : 455 - 476