共 50 条
A weak Galerkin least-squares finite element method for div-curl systems
被引:16
|作者:
Li, Jichun
[1
]
Ye, Xiu
[2
]
Zhang, Shangyou
[3
]
机构:
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
[2] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金:
美国国家科学基金会;
关键词:
Weak Galerkin finite element methods;
Div-curl problems;
Polyhedral meshes;
2ND-ORDER ELLIPTIC PROBLEMS;
DISCONTINUOUS GALERKIN;
POLYTOPAL MESHES;
EQUATIONS;
D O I:
10.1016/j.jcp.2018.02.036
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 86
页数:8
相关论文