Point vortices on the sphere: a case with opposite vorticities

被引:33
作者
Laurent-Polz, F [1 ]
机构
[1] Univ Nice, Inst Non Lineare Nice, Valbonne, France
关键词
D O I
10.1088/0951-7715/15/1/307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study systems formed of 2N point vortices on a sphere with N vortices of strength +1 and N vortices of strength -1. In this case, the Hamiltonian is conserved by the symmetry which exchanges the positive vortices with the negative vortices. We prove the existence of some fixed and relative equilibria, and then study their stability with the 'energy momentum method'. Most of the results obtained are nonlinear stability results. To end, some bifurcations are described.
引用
收藏
页码:143 / 171
页数:29
相关论文
共 29 条
[1]  
[Anonymous], 1994, INTRO MECH SYMMETRY
[2]   ON THE EQUILIBRIUM AND STABILITY OF A ROW OF POINT VORTICES [J].
AREF, H .
JOURNAL OF FLUID MECHANICS, 1995, 290 :167-181
[3]   POINT VORTEX MOTIONS WITH A CENTER OF SYMMETRY [J].
AREF, H .
PHYSICS OF FLUIDS, 1982, 25 (12) :2183-2187
[4]   Point vortices exhibit asymmetric equilibria [J].
Aref, H ;
Vainchtein, DL .
NATURE, 1998, 392 (6678) :769-770
[5]  
BOGOMOLOV VA, 1977, FLUID DYNAM, V6, P863, DOI DOI 10.1007/BF01090320
[6]  
Chossat P., 2000, ADV SERIES NONLINEAR, V15
[7]   ENERGIES AND SPACINGS OF POINT CHARGES ON A SPHERE [J].
GLASSER, L ;
EVERY, AG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (09) :2473-2482
[8]  
Golubitsky M., 1988, APPL MATH SCI, V69
[9]  
Helmholtz H., 1858, PHILOS MAG, V55, P25, DOI [DOI 10.1080/14786446708639824, 10.1080/14786446708639824]
[10]  
Kidambi R, 1999, NUOVO CIMENTO C, V22, P779