MULTIPLICITY OF SOLUTIONS TO A NONLOCAL CHOQUARD EQUATION INVOLVING FRACTIONAL MAGNETIC OPERATORS AND CRITICAL EXPONENT

被引:0
作者
Wang, Fuliang [1 ]
Xiang, Mingqi [1 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
基金
中国国家自然科学基金;
关键词
Choquard equation; fractional magnetic operator; variational method; critical exponent; SCHRODINGER-EQUATION; POSITIVE SOLUTIONS; EXISTENCE; LAPLACIAN;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the multiplicity of solutions to a nonlocal fractional Choquard equation involving an external magnetic potential and critical exponent, namely, (a + b[u](s,A)(2))(-Delta)(A)(8)u + V(x)u = integral(RN) vertical bar u(y)vertical bar(2u,8*)/vertical bar x - y vertical bar(u)dy vertical bar u vertical bar(2u,8*-2) u + lambda h(n)vertical bar u vertical bar(p-2)u in R-N, [u](s,A) = (integral(RN) integral(RN) vertical bar u(x) - e(i(x - y)center dot A(x+y)/2) u(y)vertical bar(2)/vertical bar x - y vertical bar(N + 28) dx dy)(1/2) where a >= 0, b > 0, 0 < s < min{1, N/4}, 4s <= mu < N, V : R-N -> R is a signchanging scalar potential, A : R-N -> R-N is the magnetic potential, (- Delta)(A)(s) is the fractional magnetic operator, lambda > 0 is a parameter, 2(mu,s)(*) = 2N - mu/N - 2(8) is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality and 2 < p < 2(s)(*). Under suitable assumptions on a, b and lambda, we obtain multiplicity of nontrivial solutions by using variational methods. In particular, we obtain the existence of infinitely many nontrivial solutions for the degenerate Kirchhoff case, that is, a = 0, b > 0.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Yang, Minbo .
ASYMPTOTIC ANALYSIS, 2016, 96 (02) :135-159
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 2006, Journal of the Electrochemical Society
[4]  
Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
[5]   A semilinear Schrodinger equation in the presence of a magnetic field [J].
Arioli, G ;
Szulkin, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (04) :277-295
[6]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[7]  
Binlin Z., 2016, PREPRINT
[8]   Ground state solutions of scalar field fractional Schrodinger equations [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2985-3008
[9]  
Caffarelli, 2012, NONLINEAR PARTIAL DI, P37, DOI DOI 10.1007/978-3-642-25361-4_3
[10]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260