Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films

被引:127
作者
Kim, Hanuel [1 ]
Nam, Seungjin [1 ]
Roh, Aeran [1 ]
Son, Myungwoo [2 ]
Ham, Moon-Ho [2 ]
Kim, Jae-Hun [1 ]
Choi, Hyunjoo [1 ]
机构
[1] Kookmin Univ, Sch Mat Sci & Engn, 77 Jeongneung Ro, Seoul, South Korea
[2] Gwangiu Inst Sci & Technol, Sch Mat Sci & Engn, Gwangju, South Korea
基金
新加坡国家研究基金会;
关键词
Refractory high-entropy alloy; Thin film; DC magnetron sputtering; Mechanical properties; Electrical properties; SOLID-SOLUTION PHASE; SINGLE-PHASE; MICROSTRUCTURE; STABILITY; TI; RESISTIVITY; DIFFUSION; SUBSTRATE; BEHAVIOR; ENERGY;
D O I
10.1016/j.ijrmhm.2019.02.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Refractory high-entropy alloys (RHEAs) have opened a new chapter in the development of structural materials for use at high temperatures owing to their outstanding mechanical properties and thermal stability. In this study, we developed a NbMoTaW RHEA thin film via direct current magnetron sputtering from a single target that was synthesized by sintering a mixture of multiple elemental powders. The as-deposited thin film exhibited a single nanocrystalline solid-solution phase with body-centered cubic structure. Moreover, the film had a high hardness of 12 GPa and electrical resistivity of 168 mu Omega.cm due to severe lattice distortion and the presence of nanoscale grains. Hence, RHEA films can be used as a hard coating for protective layers and as electrical resistors in nanofabricated devices owing to their favorable combination of hardness and electrical resistivity.
引用
收藏
页码:286 / 291
页数:6
相关论文
共 57 条
[1]   Kinetic equation of the effect of thickness on grain growth in nanocrystalline films [J].
An, Zhinan ;
Ding, Hong ;
Meng, Qingping ;
Rong, Yonghua .
SCRIPTA MATERIALIA, 2009, 61 (11) :1012-1015
[2]   Work of indentation methods for determining copper film hardness [J].
Beegan, D ;
Chowdhury, S ;
Laugier, MT .
SURFACE & COATINGS TECHNOLOGY, 2005, 192 (01) :57-63
[3]   Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries [J].
Chen, Hongning ;
Zou, Qingli ;
Liang, Zhuojian ;
Liu, Hao ;
Li, Quan ;
Lu, Yi-Chun .
NATURE COMMUNICATIONS, 2015, 6
[4]   Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings [J].
Cheng, J. B. ;
Liang, X. B. ;
Xu, B. S. .
SURFACE & COATINGS TECHNOLOGY, 2014, 240 :184-190
[5]   Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering [J].
Cheng, Keng-Hao ;
Lai, Chia-Han ;
Lin, Su-Jien ;
Yeh, Jien-Wei .
THIN SOLID FILMS, 2011, 519 (10) :3185-3190
[6]   Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy [J].
Dirras, G. ;
Lilensten, L. ;
Djemia, P. ;
Laurent-Brocq, M. ;
Tingaud, D. ;
Couzinie, J. -P. ;
Perriere, L. ;
Chauveau, T. ;
Guillot, I. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 654 :30-38
[7]   Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis [J].
Dolique, V. ;
Thomann, A-L ;
Brault, P. ;
Tessier, Y. ;
Gillon, P. .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (12-13) :1989-1992
[8]   Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy [J].
Dolique, V. ;
Thomann, A. -L. ;
Brault, P. ;
Tessier, Y. ;
Gillon, P. .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 117 (01) :142-147
[9]   NANOCRYSTALLINE METALS PREPARED BY HIGH-ENERGY BALL MILLING [J].
FECHT, HJ ;
HELLSTERN, E ;
FU, Z ;
JOHNSON, WL .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1990, 21 (09) :2333-2337
[10]   Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films [J].
Feng, X. B. ;
Zhang, J. Y. ;
Wang, Y. Q. ;
Hou, Z. Q. ;
Wu, K. ;
Liu, G. ;
Sun, J. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2017, 95 :264-277