Third-order density-functional tight-binding combined with the fragment molecular orbital method

被引:31
作者
Nishimoto, Yoshio [1 ,2 ]
Fedorov, Dmitri G. [3 ]
Irle, Stephan [1 ,4 ]
机构
[1] Nagoya Univ, Dept Chem, Nagoya, Aichi 4668602, Japan
[2] Kyoto Univ, Fukui Inst Fundamental Chem, Kyoto 6068103, Japan
[3] Natl Inst Adv Ind Sci & Technol, NMRI, Tsukuba, Ibaraki 3058565, Japan
[4] Nagoya Univ, Inst Transformat BioMol WPI ITbM, Nagoya, Aichi 4668602, Japan
关键词
QUANTUM MONTE-CARLO; SCC-DFTB METHOD; WATER CLUSTERS; AB-INITIO; CHEMISTRY; SIMULATIONS; ENERGIES; BENCHMARK; SYSTEMS;
D O I
10.1016/j.cplett.2015.07.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We developed the energy and its analytic gradient for the self-consistent-charge density-functional tight-binding method with the third-order expansion (DFTB3) combined with the fragment molecular orbital (FMO) method, FMO-DFTB3. FMO-DFTB3 reproduced full DFTB3 relative stabilities and the optimized structures of three polyalanine isomers. FMO-DFTB3 was applied to optimize a nano flake of cellulose I beta, consisting of 10944 atoms, and a good agreement with the experimental structure was obtained. For a cellulose sheet containing 1368 atoms, FMO-DFTB3 was 43.5 times faster than full DFTB3. The binding between sheets and chains in cellulose was elucidated, and two dispersion models were compared. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 96
页数:7
相关论文
共 50 条
[1]   MODYLAS: A Highly Parallelized General-Purpose Molecular Dynamics Simulation Program for Large-Scale Systems with Long-Range Forces Calculated by Fast Multipole Method (FMM) and Highly Scalable Fine-Grained New Parallel Processing Algorithms [J].
Andoh, Yoshimichi ;
Yoshii, Noriyuki ;
Fujimoto, Kazushi ;
Mizutani, Keisuke ;
Kojima, Hidekazu ;
Yamada, Atsushi ;
Okazaki, Susumu ;
Kawaguchi, Kazutomo ;
Nagao, Hidemi ;
Iwahashi, Kensuke ;
Mizutani, Fumiyasu ;
Minami, Kazuo ;
Ichikawa, Shin-ichi ;
Komatsu, Hidemi ;
Ishizuki, Shigeru ;
Takeda, Yasuhiro ;
Fukushima, Masao .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (07) :3201-3209
[2]  
[Anonymous], 2007, TURBOMOLE V6 6 2014
[3]   Quantum Monte Carlo and Related Approaches [J].
Austin, Brian M. ;
Zubarev, Dmitry Yu. ;
Lester, William A., Jr. .
CHEMICAL REVIEWS, 2012, 112 (01) :263-288
[4]   Systematic fragmentation of large molecules by annihilation [J].
Collins, Michael A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (21) :7744-7751
[5]   Ab Initio Study of Molecular Interactions in Cellulose Iα [J].
Devarajan, Ajitha ;
Markutsya, Sergiy ;
Lamm, Monica H. ;
Cheng, Xiaolin ;
Smith, Jeremy C. ;
Baluyut, John Y. ;
Kholod, Yana ;
Gordon, Mark S. ;
Windus, Theresa L. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (36) :10430-10443
[6]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[7]   SCC-DFTB: What is the proper degree of Self-Consistency? [J].
Elstner, M. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26) :5614-5621
[8]   The SCC-DFTB method and its application to biological systems [J].
Elstner, M. .
THEORETICAL CHEMISTRY ACCOUNTS, 2006, 116 (1-3) :316-325
[9]   Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment [J].
Elstner, M ;
Hobza, P ;
Frauenheim, T ;
Suhai, S ;
Kaxiras, E .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (12) :5149-5155
[10]   A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) [J].
Fedorov, DG ;
Olson, RM ;
Kitaura, K ;
Gordon, MS ;
Koseki, S .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (06) :872-880