A sliding Mode based Control of 2dof Robot Manipulator using Neural Network

被引:0
作者
Chaouch, Djamel Eddine [1 ]
Ahmed-Foitih, Zoubir [2 ]
Khelfi, Mohamed Faycal [3 ]
机构
[1] Univ Mascara, Lab Sci & Technol Water LSTE, Mascara, Algeria
[2] Univ Sci & Technol Oran, Fac Elect Engn, Oran, Algeria
[3] Univ Oran, Fac Sci, Lab Res Ind Comp & Networks, Oran, Algeria
来源
2012 6TH INTERNATIONAL CONFERENCE ON SCIENCES OF ELECTRONICS, TECHNOLOGIES OF INFORMATION AND TELECOMMUNICATIONS (SETIT) | 2012年
关键词
component; Neural network; Robot manipulator; Sliding mode; Robustness; Artificial intelligenc;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A sliding mode control has been a great interest in the control engineering community, with many applications particularly in the robot manipulators control. This paper presents investigations into the development of Sliding Mode control approach based neural network, where the model parameters are used in the equivalent control law. A neural model of robot parameters is calculated. The first one, to estimate the inertia matrix while the second, is dedicated to estimate the parameters of the matrix of the Coriolis/centripetal terms. The last one estimates the gravity vector. To demonstrate the applicability of the methods, a simulated two degrees of freedom robot manipulator is considered in order to evaluate the tracking properties and robustness capacities of neural sliding mode control technique.
引用
收藏
页码:906 / 911
页数:6
相关论文
共 13 条
[1]  
Babuska R., 2003, Annual Reviews in Control, V27, P73, DOI 10.1016/S1367-5788(03)00009-9
[2]   Modeling and control of non-linear systems using soft computing techniques [J].
Denai, M. A. ;
Palis, F. ;
Zeghbib, A. .
APPLIED SOFT COMPUTING, 2007, 7 (03) :728-738
[3]   A comparative study of neural network structures in identification of nonlinear systems [J].
Efe, MO ;
Kaynak, O .
MECHATRONICS, 1999, 9 (03) :287-300
[4]  
Hagan M. T., 1997, Neural network design
[5]  
JUNG S, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, P2928, DOI 10.1109/ICSMC.1995.538228
[6]   Reduced-order observer-based point-to-point and trajectory controllers for robot manipulators [J].
Khelfi, MF ;
Zasadzinski, M ;
Rafaralahy, H ;
Richard, E ;
Darouach, M .
CONTROL ENGINEERING PRACTICE, 1996, 4 (07) :991-1000
[7]   Multilayer neural-net robot controller with guaranteed tracking performance [J].
Lewis, FL ;
Yesildirek, A ;
Liu, K .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (02) :388-399
[8]   AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS [J].
MARQUARDT, DW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02) :431-441
[9]   TRAJECTORY CONTROL OF ROBOTIC MANIPULATORS USING NEURAL NETWORKS [J].
OZAKI, T ;
SUZUKI, T ;
FURUHASHI, T ;
OKUMA, S ;
UCHIKAWA, Y .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1991, 38 (03) :195-202
[10]  
Prentice H., 1995, OVERVIEW AUTOMATICA, V31, P1691