A mathematical formulation of the random phase approximation for crystals

被引:17
作者
Cances, Eric [1 ]
Stoltz, Gabriel [1 ]
机构
[1] Univ Paris Est, CERMICS, Projet MICMAC, Ecole Ponts ParisTech,INRIA, F-77455 Marne La Vallee 2, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2012年 / 29卷 / 06期
关键词
HARTREE-FOCK EQUATIONS; DIELECTRIC-CONSTANT; TIME; EXISTENCE;
D O I
10.1016/j.anihpc.2012.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This works extends the recent study on the dielectric permittivity of crystals within the Hartree model [E. Cances, M. Lewin, Arch. Ration. Mech. Anal. 197 (1) (2010) 139-177] to the time-dependent setting. In particular. we prove the existence and uniqueness of the nonlinear Hartree dynamics (also called the random phase approximation in the physics literature), in a suitable functional space allowing to describe a local defect embedded in a perfect crystal. We also give a rigorous mathematical definition of the microscopic frequency-dependent polarization matrix, and derive the macroscopic Maxwell-Gauss equation for insulating and semiconducting crystals, from a first order approximation of the nonlinear Hartree model, by means of homogenization arguments. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:887 / 925
页数:39
相关论文
共 24 条
[21]  
SIMON B., 1979, Trace Ideals and Their Applications
[22]   TIME-DEPENDENT APPROACH TO SCATTERING FROM IMPURITIES IN A CRYSTAL [J].
THOMAS, LE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 33 (04) :335-343
[23]   DIELECTRIC CONSTANT WITH LOCAL FIELD EFFECTS INCLUDED [J].
WISER, N .
PHYSICAL REVIEW, 1963, 129 (01) :62-+
[24]   EXISTENCE OF SOLUTIONS FOR SCHRODINGER EVOLUTION-EQUATIONS [J].
YAJIMA, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (03) :415-426