Physics-Informed Neural Networks for Solving Parametric Magnetostatic Problems

被引:27
作者
Beltran-Pulido, Andres [1 ]
Bilionis, Ilias [2 ]
Aliprantis, Dionysios [1 ]
机构
[1] Purdue Univ, Elmore Family Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
关键词
Electromagnet; energy functional; parametric magnetostatics; physics-informed neural networks; DESIGN;
D O I
10.1109/TEC.2022.3180295
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The objective of this paper is to investigate the ability of physics-informed neural networks to learn the magnetic field response as a function of design parameters in the context of a two-dimensional (2-D) magnetostatic problem. Our approach is as follows. First, we present a functional whose minimization is equivalent to solving parametric magnetostatic problems. Subsequently, we use a deep neural network (DNN) to represent the magnetic field as a function of space and parameters that describe geometric features and operating points. We train the DNN by minimizing the physics-informed functional using stochastic gradient descent. Lastly, we demonstrate our approach on a ten-dimensional EI-core electromagnet problem with parameterized geometry. We evaluate the accuracy of the DNN by comparing its predictions to those of finite element analysis.
引用
收藏
页码:2678 / 2689
页数:12
相关论文
共 44 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Utilizing particle swarm Optimization in the field computation of nonlinear media subject to mechanical stress [J].
Adly, A. A. ;
Abd-El-Hafiz, S. K. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
[3]   Field computation in non-linear magnetic media using particle swarm optimization [J].
Adly, AA ;
Abd-El-Hafiz, SK .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 :690-692
[4]   Multiphysics Design of a V-Shape IPM Motor [J].
Akiki, Paul ;
Hassan, Maya Hage ;
Bensetti, Mohamed ;
Dessante, Philippe ;
Vannier, Jean-Claude ;
Prieto, Dany ;
McClelland, Mike .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2018, 33 (03) :1141-1153
[5]  
Aliprantis D., 2022, Electric machines: theory and analysis using the finite element method
[6]  
ANSYS Inc, 2022, ANSYS MAXW
[7]  
Baydin AG, 2018, J MACH LEARN RES, V18
[8]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[9]  
Beltrán-Pulido A, 2022, Arxiv, DOI arXiv:2202.04041
[10]   Uncertainty Quantification and Sensitivity Analysis in a Nonlinear Finite-Element Model of a Permanent Magnet Synchronous Machine [J].
Beltran-Pulido, Andres ;
Aliprantis, Dionysios ;
Bilionis, Ilias ;
Munoz, Alfredo R. ;
Leonardi, Franco ;
Avery, Seth M. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2020, 35 (04) :2152-2161