A mono-implicit Runge-Kutta-Nystrom modification of the Numerov method

被引:4
作者
VanHecke, T [1 ]
VanDaele, M [1 ]
VandenBerghe, G [1 ]
DeMeyer, H [1 ]
机构
[1] STATE UNIV GHENT,VAKGRP TOEGEPASTE WISKUNDE INFORMAT,B-9000 GHENT,BELGIUM
关键词
second-order ODEs; Runge-Kutta-Nystrom methods; mono-implicit methods; stability; periodicity; phase lag;
D O I
10.1016/S0377-0427(96)00139-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present two two-parameter families of fourth-order mono-implicit Runge-Kutta-Nystrom methods. Each member of these families can be considered as a modification of the Numerov method. We analyze the stability and periodicity properties of these methods. It is shown that (i) within one of these families there exist A-stable (even L-stable) and P-stable methods, and (ii) in both families there exist methods with a phase lag of order six.
引用
收藏
页码:161 / 177
页数:17
相关论文
共 19 条
[2]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :277-281
[4]   AN EXPLICIT HYBRID METHOD OF NUMEROV TYPE FOR 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
FRANCO, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 59 (01) :79-90
[5]  
HAIRER E, 1977, NUMER MATH, V27, P283, DOI 10.1007/BF01396178
[6]   UNCONDITIONALLY STABLE METHODS FOR 2ND ORDER DIFFERENTIAL-EQUATIONS [J].
HAIRER, E .
NUMERISCHE MATHEMATIK, 1979, 32 (04) :373-379
[7]  
HAIRER E, 1976, NUMER MATH, V25, P383, DOI 10.1007/BF01396335
[8]  
HAIRER E., 1987, SOLVING ORDINARY DIF
[9]   A NUMEROV-LIKE SCHEME FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION IN THE DEEP CONTINUUM SPECTRUM OF ENERGIES [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (01) :23-27
[10]  
Kramarz L., 1980, BIT (Nordisk Tidskrift for Informationsbehandling), V20, P215, DOI 10.1007/BF01933194