Multiple-relaxation-time lattice Boltzmann simulation of non-Newtonian flows past a rotating circular cylinder

被引:44
作者
Fallah, Keivan [1 ]
Khayat, Morteza [2 ]
Borghei, Mohammad Hossein [3 ]
Ghaderi, Atena [4 ]
Fattahi, Ehsan [5 ]
机构
[1] Islamic Azad Univ, Sari Branch, Dept Mech Engn, Sari, Iran
[2] Islamic Azad Univ, Sci & Res Branch, Dept Mech Engn, Tehran, Iran
[3] Iran Univ Sci & Technol, Fac Mech Engn, Tehran, Iran
[4] Islamic Azad Univ, Ayatollah Amoli Branch, Dept Mech Engn, Amol, Iran
[5] Babol Univ Technol, Fac Mech Engn, Babol Sar, Iran
关键词
Lattice Boltzmann method; Multiple-relaxation-time; Power-law fluids; Drag coefficient; Lift coefficient; Rotating circular cylinder; POWER-LAW FLUIDS; SHEAR-THINNING FLUIDS; NUMERICAL-SIMULATION; STEADY FLOW; BOUNDARY-CONDITIONS; HEAT-TRANSFER; LAMINAR-FLOW; PRESSURE; MODELS; WAKE;
D O I
10.1016/j.jnnfm.2012.03.014
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The flow field around a rotating circular cylinder is studied numerically using Lattice Boltzmann method via multi-relaxation-time approach. Simulations are performed at a fixed Reynolds number of 100 while dimensionless rotational ratio (beta) and power-law index (n) range as, 0 <= beta <= 2.5 and 0.4 <= n <= 1.8, respectively. The effects of dimensionless rotational ratio and the power-law index on the flow field, mean drag and lift coefficients, Strouhal number and pressure coefficient are investigated in detail. To verify the simulation, the results are compared to previous experimental and numerical data. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 53 条
[21]   Lattice Boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media [J].
Gao, Dongyan ;
Chen, Zhenqian .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (04) :493-501
[22]   Multireflection boundary conditions for lattice Boltzmann models -: art. no. 066614 [J].
Ginzburg, I ;
d'Humières, D .
PHYSICAL REVIEW E, 2003, 68 (06) :666141-666143
[23]   An extrapolation method for boundary conditions in lattice Boltzmann method [J].
Guo, ZL ;
Zheng, CG ;
Shi, BC .
PHYSICS OF FLUIDS, 2002, 14 (06) :2007-2010
[24]  
Hedayat MM, 2010, NIHON REOROJI GAKK, V38, P201, DOI 10.1678/rheology.38.201
[25]   Laminar flow past a rotating circular cylinder [J].
Kang, SM ;
Choi, HC ;
Lee, S .
PHYSICS OF FLUIDS, 1999, 11 (11) :3312-3321
[26]   Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid [J].
Kefayati, Gh. R. ;
Hosseinizadeh, S. F. ;
Gorji, M. ;
Sajjadi, H. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2011, 38 (06) :798-805
[27]   Multi-relaxation time Lattice Boltzmann model for multiphase flows [J].
Kuzmin, A. ;
Mohamad, A. A. ;
Succi, S. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2008, 19 (06) :875-902
[28]   Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability [J].
Lallemand, P ;
Luo, LS .
PHYSICAL REVIEW E, 2000, 61 (06) :6546-6562
[29]   Lattice Boltzmann method for moving boundaries [J].
Lallemand, P ;
Luo, LS .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 184 (02) :406-421
[30]   Simulation of generalized newtonian fluids with the lattice boltzmann method [J].
Malaspinas, Orestis ;
Courbebaisse, Guy ;
Deville, Michel .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (12) :1939-1949