The Chow ring of double EPW sextics

被引:13
作者
Ferretti, Andrea [1 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词
EPW sextics; Chow ring; hyperkahler; irreducible symplectic varieties; IRREDUCIBLE SYMPLECTIC 4-FOLDS; MANIFOLDS; SURFACE;
D O I
10.2140/ant.2012.6.539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A conjecture of Beauville and Voisin states that for an irreducible symplectic variety X the subring of CH* (X) generated by divisors goes injectively into the cohomology of X, via the cycle map. We prove this for a very general double Eisenbud-Popescu-Walter sextic.
引用
收藏
页码:539 / 560
页数:22
相关论文
共 15 条
[1]  
[Anonymous], 2013, ALGEBRAIC GEOM
[2]  
Beauville A, 2004, J ALGEBRAIC GEOM, V13, P417
[3]  
Beauville A., 2007, ALGEBRAIC CYCLES MOT
[4]  
Ferretti A., 2009, REND MAT AP IN PRESS, V31, P3
[5]  
Ferretti A., 2012, MATH Z IN PRESS
[6]  
Fulton W., 1984, ERGEBNISSE MATH, V2
[7]   THE BETTI NUMBERS OF THE HILBERT SCHEME OF POINTS ON A SMOOTH PROJECTIVE SURFACE [J].
GOTTSCHE, L .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :193-207
[8]  
Griffiths P., 1978, PRINCIPLES ALGEBRAIC
[9]  
O'Grady K., 2010, ARXIV10073882
[10]   Irreducible symplectic 4-folds numerically equivalent to (K3)[2] [J].
O'Grady, Kieran G. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (04) :553-608