Prognostic biomarkers of pancreatic cancer identified based on a competing endogenous RNA regulatory network

被引:4
作者
Qu, Yuanxu [1 ,2 ]
Lu, Jiongdi [1 ,2 ]
Mei, Wentong [1 ,2 ]
Jia, Yuchen [1 ,2 ]
Bian, Chunjing [1 ,2 ]
Ding, Yixuan [1 ,2 ]
Guo, Yulin [1 ,2 ]
Cao, Feng [1 ,2 ]
Li, Fei [1 ,2 ,3 ]
机构
[1] Capital Med Univ, Xuanwu Hosp, Dept Gen Surg, Beijing, Peoples R China
[2] Capital Med Univ, Clin Ctr Acute Pancreatitis, Beijing, Peoples R China
[3] Xuanwu Hosp, 45 Changchun St, Beijing, Peoples R China
关键词
Pancreatic cancer; computational biology; competing endogenous RNA network (ceRNA network); survival analysis; prognosis; DUCTAL ADENOCARCINOMA; SIGNALING PATHWAY; EXPRESSION; SUBTYPES; GROWTH; CERNA; SMAD6; MICRORNA; INVASION; PROMOTES;
D O I
10.21037/tcr-22-709
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Pancreatic cancer is an insidious and heterogeneous malignancy with poor prognosis that is often locally unresectable. Therefore, determining the underlying mechanisms and effective prognostic indicators of pancreatic cancer may help optimize clinical management. This study was conducted to develop a prognostic model for pancreatic cancer based on a competing endogenous RNA (ceRNA) network.Methods: We obtained transcriptomic data and corresponding clinicopathological information of pancreatic cancer samples from The Cancer Genome Atlas (TCGA) database (training set). Based on the ceRNA interaction network, we screened candidate genes to build prediction models. Univariate Cox regression analysis was performed to screen for genes associated with prognosis, and least absolute shrinkage and selection operator (LASSO) regression analysis was conducted to construct a predictive model. A receiver operating characteristic (ROC) curve was drawn, and the C-index was calculated to evaluate the accuracy of the prediction model. Furthermore, we downloaded transcriptomic data and related clinical information of pancreatic cancer samples from the Gene Expression Omnibus database (validation set) to evaluate the robustness of our prediction model.Results: Eight genes (ANLN, FHDC1, LY6D, SMAD6, ACKR4, RAB27B, AUNIP, and GPRIN3) were used to construct the prediction model, which was confirmed as an independent predictor for evaluating the prognosis of patients with pancreatic cancer through univariate and multivariate Cox regression analysis. By plotting the decision curve, we found that the risk score model is an independent predictor has the greatest impact on survival compared to pathological stage and targeted molecular therapy.Conclusions: An eight-gene prediction model was constructed for effectively and independently predicting the prognosis of patients with pancreatic cancer. These eight genes identified show potential as diagnostic and therapeutic targets.
引用
收藏
页码:4019 / 4036
页数:22
相关论文
共 59 条
[1]   An Eight-Gene Hypoxia Signature Predicts Survival in Pancreatic Cancer and Is Associated With an Immunosuppressed Tumor Microenvironment [J].
Abou Khouzam, Raefa ;
Rao, Shyama Prasad ;
Venkatesh, Goutham Hassan ;
Zeinelabdin, Nagwa Ahmed ;
Buart, Stephanie ;
Meylan, Maxime ;
Nimmakayalu, Manjunath ;
Terry, Stephane ;
Chouaib, Salem .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[2]   Genomic analyses identify molecular subtypes of pancreatic cancer [J].
Bailey, Peter ;
Chang, David K. ;
Nones, Katia ;
Johns, Amber L. ;
Patch, Ann-Marie ;
Gingras, Marie-Claude ;
Miller, David K. ;
Christ, Angelika N. ;
Bruxner, Tim J. C. ;
Quinn, Michael C. ;
Nourse, Craig ;
Murtaugh, L. Charles ;
Harliwong, Ivon ;
Idrisoglu, Senel ;
Manning, Suzanne ;
Nourbakhsh, Ehsan ;
Wani, Shivangi ;
Fink, Lynn ;
Holmes, Oliver ;
Chin, Vencssa ;
Anderson, Matthew J. ;
Kazakoff, Stephen ;
Leonard, Conrad ;
Newell, Felicity ;
Waddell, Nick ;
Wood, Scott ;
Xu, Qinying ;
Wilson, Peter J. ;
Cloonan, Nicole ;
Kassahn, Karin S. ;
Taylor, Darrin ;
Quek, Kelly ;
Robertson, Alan ;
Pantano, Lorena ;
Mincarelli, Laura ;
Sanchez, Luis N. ;
Evers, Lisa ;
Wu, Jianmin ;
Pinese, Mark ;
Cowley, Mark J. ;
Jones, Marc D. ;
Colvin, Emily K. ;
Nagrial, Adnan M. ;
Humphrey, Emily S. ;
Chantrill, Lorraine A. ;
Mawson, Amanda ;
Humphris, Jeremy ;
Chou, Angela ;
Pajic, Marina ;
Scarlett, Christopher J. .
NATURE, 2016, 531 (7592) :47-+
[3]  
Barrett T, 2005, NUCLEIC ACIDS RES, V33, pD562
[4]   Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer [J].
Barros-Silva, Joao D. ;
Linn, Douglas E. ;
Steiner, Ivana ;
Guo, Guoji ;
Ali, Adnan ;
Pakula, Hubert ;
Ashton, Garry ;
Peset, Isabel ;
Brown, Michael ;
Clarke, Noel W. ;
Bronson, Roderick T. ;
Yuan, Guo-Cheng ;
Orkin, Stuart H. ;
Li, Zhe ;
Baena, Esther .
CELL REPORTS, 2018, 25 (12) :3504-+
[5]   Expression and prognostic utility of SSX2IP in patients with nasopharyngeal carcinoma [J].
Chang, Shih-Lun ;
Lee, Sung-Wei ;
Yang, Sheau-Fang ;
Chien, Chu-Chun ;
Chan, Ti-Chun ;
Chen, Tzu-Ju ;
Yang, Ching-Chieh ;
Li, Chien-Feng ;
Wei, Yu-Ching .
APMIS, 2020, 128 (04) :287-297
[6]   Gene expression network regulated by DNA methylation and microRNA during microcystin-leucine arginine induced malignant transformation in human hepatocyte L02 cells [J].
Chen, Hong-Qiang ;
Zhao, Ji ;
Li, Yan ;
He, Li-Xiong ;
Huang, Yu-Jing ;
Shu, Wei-Qun ;
Cao, Jia ;
Liu, Wen-Bin ;
Liu, Jin-Yi .
TOXICOLOGY LETTERS, 2018, 289 :42-53
[7]   Molecular subtypes of pancreatic cancer [J].
Collisson, Eric A. ;
Bailey, Peter ;
Chang, David K. ;
Biankin, Andrew, V .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2019, 16 (04) :207-220
[8]   Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy [J].
Collisson, Eric A. ;
Sadanandam, Anguraj ;
Olson, Peter ;
Gibb, William J. ;
Truitt, Morgan ;
Gu, Shenda ;
Cooc, Janine ;
Weinkle, Jennifer ;
Kim, Grace E. ;
Jakkula, Lakshmi ;
Feiler, Heidi S. ;
Ko, Andrew H. ;
Olshen, Adam B. ;
Danenberg, Kathleen L. ;
Tempero, Margaret A. ;
Spellman, Paul T. ;
Hanahan, Douglas ;
Gray, Joe W. .
NATURE MEDICINE, 2011, 17 (04) :500-U140
[9]   Genome-wide scan of long noncoding RNA single nucleotide polymorphisms and pancreatic cancer susceptibility [J].
Corradi, Chiara ;
Gentiluomo, Manuel ;
Gajdan, Laszlo ;
Cavestro, Giulia Martina ;
Kreivenaite, Edita ;
Di Franco, Gregorio ;
Sperti, Cosimo ;
Giaccherini, Matteo ;
Petrone, Maria Chiara ;
Tavano, Francesca ;
Gioffreda, Domenica ;
Morelli, Luca ;
Soucek, Pavel ;
Andriulli, Angelo ;
Izbicki, Jakob R. ;
Napoli, Niccolo ;
Malecka-Panas, Ewa ;
Hegyi, Peter ;
Neoptolemos, John P. ;
Landi, Stefano ;
Vashist, Yogesh ;
Pasquali, Claudio ;
Lu, Ye ;
Cervena, Klara ;
Theodoropoulos, George E. ;
Moz, Stefania ;
Capurso, Gabriele ;
Strobel, Oliver ;
Carrara, Silvia ;
Hackert, Thilo ;
Hlavac, Viktor ;
Archibugi, Livia ;
Oliverius, Martin ;
Vanella, Giuseppe ;
Vodicka, Pavel ;
Arcidiacono, Paolo Giorgio ;
Pezzilli, Raffaele ;
Milanetto, Anna Caterina ;
Lawlor, Rita T. ;
Ivanauskas, Audrius ;
Szentesi, Andrea ;
Kupcinskas, Juozas ;
Testoni, Sabrina G. G. ;
Lovecek, Martin ;
Nentwich, Michael ;
Gazouli, Maria ;
Luchini, Claudio ;
Zuppardo, Raffaella Alessia ;
Darvasi, Erika ;
Brenner, Hermann .
INTERNATIONAL JOURNAL OF CANCER, 2021, 148 (11) :2779-2788
[10]   LncRNA GAS5 suppresses ovarian cancer progression by targeting the miR-96-5p/PTEN axis [J].
Dong, Qian ;
Long, Xiaoran ;
Cheng, Jie ;
Wang, Wenjing ;
Tian, Qi ;
Di, Wen .
ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (24)