On the weighted decay for solutions of the Navier-Stokes system

被引:27
作者
Kukavica, Igor [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
Navier-Stokes equation; Time decay; Space decay; Strong solutions; SPACE-TIME DECAY; WEAK SOLUTIONS; ASYMPTOTIC-BEHAVIOR; L2; DECAY; EQUATIONS; LP;
D O I
10.1016/j.na.2008.03.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the question of to what extent the temporal decay parallel to u(., t)parallel to(L2) = O(t-(gamma 0)) for solutions u of the Navier-Stokes equation influences the decay of weighted norms. We prove that parallel to vertical bar x vertical bar(a)u(., t)parallel to(L2) = O(t(-gamma 0+a/2)) holds under the condition 0 <= a < n/2 + 1. This extends the range of weights obtained in [L Kukavica, JJ. Torres, Weighted L(p) decay for solutions of the Navier-Stokes equations, Commun. Partial Differential Equations 32 (2007) 819-831]. A wider range of exponents is also obtained for the decay of LP norms. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2466 / 2470
页数:5
相关论文
共 25 条
[1]   Pointwise decay of solutions and of higher derivatives to Navier-Stokes equations [J].
Amrouche, C ;
Girault, V ;
Schoenbek, ME ;
Schonbek, TP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) :740-753
[2]  
[Anonymous], 2002, FUNKC EKVACIOJ-SER I
[3]   Temporal and spatial decays for the Navier-Stokes equations [J].
Bae, HO ;
Jin, BJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :461-477
[4]   Space-time decay of Navier-Stokes flows invariant under rotations [J].
Brandolese, L .
MATHEMATISCHE ANNALEN, 2004, 329 (04) :685-706
[5]  
Brandolese L, 2004, REV MAT IBEROAM, V20, P223
[6]   On the instantaneous spreading for the Navier-Stokes system in the whole space [J].
Brandolese, L ;
Meyer, Y .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :273-285
[7]   New asymptotic profiles of nonstationary solutions of the Navier-Stokes system [J].
Brandolese, Lorenzo ;
Vigneron, Francois .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 88 (01) :64-86
[8]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[9]  
Dobrokhotov S., 1994, RUSS J MATH PHYS, V2, P133
[10]  
Gallay T., 2001, Recent developments in the mathematical theory of water waves