Asymptotically efficient estimates for nonparametric regression models

被引:14
作者
Galtchouk, L
Pergamenshchikov, S
机构
[1] Univ Strasbourg, Dept Math, IRMA, F-67084 Strasbourg, France
[2] Univ Rouen, UFR Sci, Lab Math Raphael Salem, CNRS,UMR 6085, F-76821 St Etienne, France
关键词
asymptotical efficiency; kernel estimates; minimax; nonparametric regression;
D O I
10.1016/j.spl.2005.10.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper deals with estimating problem of regression function at a given state point in nonparametric regression models with Gaussian noises and with non-Gaussian noises having unknown distribution. An asymptotically efficient kernel estimator is constructed for a minimax risk. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:852 / 860
页数:9
相关论文
共 18 条
[1]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[2]   Local minimax pointwise estimation of a multivariate density [J].
Belitser, E .
STATISTICA NEERLANDICA, 2000, 54 (03) :351-365
[3]   EFFICIENT LOCATION AND REGRESSION ESTIMATION FOR LONG-RANGE DEPENDENT REGRESSION-MODELS [J].
DAHLHAUS, R .
ANNALS OF STATISTICS, 1995, 23 (03) :1029-1047
[4]  
DONOHO DL, 1995, J ROY STAT SOC B MET, V57, P301
[5]  
DONOHO DL, 1991, ANN STAT, V19, P633, DOI 10.1214/aos/1176348114
[6]   STATISTICAL ESTIMATION AND OPTIMAL RECOVERY [J].
DONOHO, DL .
ANNALS OF STATISTICS, 1994, 22 (01) :238-270
[7]  
Efroimovich S., 1999, NONPARAMETRIC CURVE
[8]  
Emery M, 2000, LECT NOTES MATH, V1738, P5
[9]  
Freedman D., 1971, BROWNIAN MOTION DIFF
[10]  
GALTCHOUK L, 2006, IN PRESS STAT INFERE