Chebyshev polynomials on circular arcs

被引:4
作者
Schiefermayr, Klaus [1 ]
机构
[1] Univ Appl Sci Upper Austria, Sch Engn, Campus Wels, Wels, Austria
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2019年 / 85卷 / 3-5期
关键词
Chebyshev polynomials; circular arc; Jacobian elliptic function; Jacobian theta function; DEGENERATING BEHAVIOR;
D O I
10.14232/actasm-018-343-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an explicit representation of the complex Chebyshev polynomials on a given arc of the unit circle (in the complex plane) in terms of real Chebyshev polynomials on two symmetric intervals (on the real line). The real Chebyshev polynomials, for their part, can be expressed via a conformal mapping with the help of Jacobian elliptic and theta functions, which goes back to the work of Akhiezer in the 1930's.
引用
收藏
页码:629 / 649
页数:21
相关论文
共 27 条
[1]  
AKHIESER N. I., 1992, THEORY APPROXIMATION
[2]  
Akhiezer N.I., 1928, B SOC PHYS MATH KAZA, V3, P1
[3]   ON CHEBYSHEV POLYNOMIALS IN THE COMPLEX PLANE [J].
Andrievskii, V. V. .
ACTA MATHEMATICA HUNGARICA, 2017, 152 (02) :505-524
[4]   Chebyshev Polynomials on a System of Continua [J].
Andrievskii, Vladimir V. .
CONSTRUCTIVE APPROXIMATION, 2016, 43 (02) :217-229
[5]  
[Anonymous], 1968, Functions of a Complex Variable
[6]  
[Anonymous], ANAL TOOL MATH PHYS
[7]  
[Anonymous], 1997, CONFORMAL INVARINANT
[8]  
Byrd P. F., 1971, Handbook of elliptical integrals for engineers and scientists
[9]   THE DEGENERATING BEHAVIOR OF ELLIPTIC FUNCTIONS [J].
CARLSON, BC ;
TODD, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (06) :1120-1129
[10]  
Christiansen JS, 2017, INVENT MATH, V208, P217, DOI 10.1007/s00222-016-0689-x