THE VLASOV-POISSON-BOLTZMANN SYSTEM FOR SOFT POTENTIALS

被引:59
|
作者
Duan, Renjun [1 ]
Yang, Tong [2 ,3 ]
Zhao, Huijiang [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
来源
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 2013年 / 23卷 / 06期
基金
中国国家自然科学基金;
关键词
Vlasov-Poisson-Boltzmann system; soft potentials; stability; LINEARIZED BOLTZMANN; CLASSICAL-SOLUTIONS; WHOLE SPACE; EQUATION; DECAY; CUTOFF;
D O I
10.1142/S0218202513500012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An important physical model describing the dynamics of dilute weakly ionized plasmas in the collisional kinetic theory is the Vlasov-Poisson-Boltzmann system for which the plasma responds strongly to the self-consistent electrostatic force. This paper is concerned with the electron dynamics of kinetic plasmas in the whole space when the positive charged ion flow provides a spatially uniform background. We establish the global existence and optimal convergence rates of solutions near a global Maxwellian to the Cauchy problem on the Vlasov-Poisson-Boltzmann system for angular cutoff soft potentials with -2 <= gamma < 0. The main idea is to introduce a time-dependent weight function in the velocity variable to capture the singularity of the cross-section at zero relative velocity.
引用
收藏
页码:979 / 1028
页数:50
相关论文
共 50 条
  • [1] The Vlasov-Poisson-Boltzmann system with angular cutoff for soft potentials
    Xiao, Qinghua
    Xiong, Linjie
    Zhao, Huijiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (06) : 1196 - 1232
  • [2] The Vlasov-Poisson-Boltzmann system for the whole range of cutoff soft potentials
    Xiao, Qinghua
    Xiong, Linjie
    Zhao, Huijiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (01) : 166 - 226
  • [3] STABILITY OF RAREFACTION WAVES FOR THE TWO-SPECIES VLASOV-POISSON-BOLTZMANN SYSTEM WITH SOFT POTENTIALS
    YANG, D. O. N. G. C. H. E. N. G.
    YU, H. O. N. G. J. U. N.
    METHODS AND APPLICATIONS OF ANALYSIS, 2022, 29 (01) : 95 - 148
  • [4] The Vlasov-Poisson-Boltzmann system for non-cutof hard potentials
    XIAO QingHua
    XIONG LinJie
    ZHAO HuiJiang
    ScienceChina(Mathematics), 2014, 57 (03) : 515 - 540
  • [5] The Vlasov-Poisson-Boltzmann system for non-cutoff hard potentials
    QingHua Xiao
    LinJie Xiong
    HuiJiang Zhao
    Science China Mathematics, 2014, 57 : 515 - 540
  • [6] The Vlasov-Poisson-Boltzmann system for non-cutoff hard potentials
    Xiao QingHua
    Xiong LinJie
    Zhao HuiJiang
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (03) : 515 - 540
  • [7] On the Vlasov-Poisson-Boltzmann limit of the Vlasov-Maxwell-Boltzmann system
    Jiang, Ning
    Lei, Yuanjie
    Zhao, Huijiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (07)
  • [8] DIFFUSION LIMIT OF THE VLASOV-POISSON-BOLTZMANN SYSTEM
    Li, Hai-Liang
    Yang, Tong
    Zhong, Mingying
    KINETIC AND RELATED MODELS, 2021, 14 (02) : 211 - 255
  • [9] Cauchy problem for the Vlasov-Poisson-Boltzmann system
    Yang, Tong
    Yu, Hongjun
    Zhao, Huijiang
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 182 (03) : 415 - 470
  • [10] Spectrum Analysis for the Vlasov-Poisson-Boltzmann System
    Li, Hai-Liang
    Yang, Tong
    Zhong, Mingying
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (01) : 311 - 355