Conditions on the stability of a class of second-order switched systems

被引:34
作者
Akar, M [1 ]
Paul, A
Safonov, MG
Mitra, U
机构
[1] Natl Univ Ireland, Hamilton Inst, Maynooth, Kildare, Ireland
[2] Marger Johnson McCollom, Portland, OR 97204 USA
[3] Univ So Calif, Dept Elect Engn Syst, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
common quadratic Lyapunov function (CQLF); M-matrix; stability; switched systems;
D O I
10.1109/TAC.2005.863512
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a special class of systems, it is shown that the existence of a common quadratic Lyapunov function (CQLF) is necessary and sufficient for the stability of an associated switched system under arbitrary switching. Furthermore, it is shown that the existence of a CQLF for N (N > 2) subsystems is equivalent to the existence of a CQLF for every pair of subsystems. An algorithm is proposed to compute a CQLF for the subsystems, when it exists, using the left and right eigenvectors of a critical matrix obtained from a matrix pencil.
引用
收藏
页码:338 / 340
页数:3
相关论文
共 11 条
[1]   On the existence of common quadratic Lyapunov functions for second-order linear time-invariant discrete-time systems [J].
Akar, M ;
Narendra, KS .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2002, 16 (10) :729-751
[2]  
Bapat RB., 1997, NONNEGATIVE MATRICES
[3]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[4]   A converse Lyapunov theorem for a class of dynamical systems which undergo switching [J].
Dayawansa, WP ;
Martin, CF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (04) :751-760
[5]  
Fiedler M., 1962, CZECH MATH J, V12, P382, DOI [10.21136/CMJ.1962.100526, DOI 10.21136/CMJ.1962.100526]
[6]   A SIMPLE DISTRIBUTED AUTONOMOUS POWER-CONTROL ALGORITHM AND ITS CONVERGENCE [J].
FOSCHINI, GJ ;
MILJANIC, Z .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1993, 42 (04) :641-646
[7]  
GURVITS L, 2004, P MTNS LEUV BELG JUL
[8]  
Horn RA., 2013, Topics in Matrix Analysis, V2nd ed, DOI DOI 10.1017/CBO9780511840371
[9]  
Liberzon D., 2003, SYS CON FDN
[10]  
Paul A, 2004, P AMER CONTR CONF, P1655