Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle

被引:95
作者
Wu, Kai [1 ,2 ]
Yang, Jun [1 ]
Zhang, Yao [2 ]
Wang, Chenyun [3 ]
Wang, Deyu [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Amperex Technol Ltd, N Zone SSL Sci & Tech, Dongguan 523808, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
关键词
Lithium ion battery; Li4Ti5O12; anode; Battery inflation; Hybrid electric vehicle; HIGH-RATE PERFORMANCE; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; ION; SAFETY;
D O I
10.1007/s10800-012-0442-0
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon-coated nano-Li4Ti5O12 (LTO) anode material was prepared and evaluated with 5.5 Ah pouch cells, paired with LiNi1/3Co1/3Mn1/3O2 cathode for potential hybrid electric vehicle (HEV) application. The as-prepared LTO batteries showed excellent electrochemical performance. They delivered a peak discharge power density of ca. 2,800 W kg(-1), and featured a high power (94 and 92 % of discharge and charge capacity at 20 C, respectively) and a prolonged cycle life (89 % capacity retention after 5,000 cycles at 10 C charge and discharge rate). However, the severe capacity decay was observed at elevated temperatures because of loose (worse) interfaces caused by gas generation. It was found that H-2 was the dominant gas component, and the inflation rate had an Arrhenius-type correlation with storage temperature. The battery inflation, arising from side reactions between electrolyte and LTO anode, is the major technical barrier for practical application of the LTO batteries in HEV.
引用
收藏
页码:989 / 995
页数:7
相关论文
共 20 条
[1]   Nanostructured Anode Material for High-Power Battery System in Electric Vehicles [J].
Amine, Khalil ;
Belharouak, Ilias ;
Chen, Zonghai ;
Tran, Taison ;
Yumoto, Hiroyuki ;
Ota, Naoki ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
ADVANCED MATERIALS, 2010, 22 (28) :3052-3057
[2]   On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system [J].
Belharouak, I. ;
Sun, Y.-K. ;
Lu, W. ;
Amine, K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (12) :A1083-A1087
[3]   Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications [J].
Belharouak, Ilias ;
Koenig, Gary M., Jr. ;
Amine, K. .
JOURNAL OF POWER SOURCES, 2011, 196 (23) :10344-10350
[4]   Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery [J].
Cai, Rui ;
Yuan, Tao ;
Ran, Ran ;
Liu, Xiaoqin ;
Shao, Zongping .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (01) :68-77
[5]   STRUCTURE AND ELECTROCHEMISTRY OF THE SPINEL OXIDES LITI2O4 AND LI4/3TI5/3O4 [J].
COLBOW, KM ;
DAHN, JR ;
HAERING, RR .
JOURNAL OF POWER SOURCES, 1989, 26 (3-4) :397-402
[6]   Synthesis and Characterization of Spherical La-Doped Nanocrystalline Li4Ti5O12/C Compound for Lithium-Ion Batteries [J].
Gao, Jian ;
Jiang, Changyin ;
Wan, Chunrong .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (02) :K39-K42
[7]   Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode [J].
Jiang, Chunhai ;
Ichihara, Masaki ;
Honma, Itaru ;
Zhou, Haoshen .
ELECTROCHIMICA ACTA, 2007, 52 (23) :6470-6475
[8]   A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery [J].
Jung, Hun-Gi ;
Jang, Min Woo ;
Hassoun, Jusef ;
Sun, Yang-Kook ;
Scrosati, Bruno .
NATURE COMMUNICATIONS, 2011, 2
[9]   Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery [J].
Li, Xing ;
Qu, Meizhen ;
Huai, Yongjian ;
Yu, Zuolong .
ELECTROCHIMICA ACTA, 2010, 55 (08) :2978-2982
[10]   Enhanced High-Rate Performance of Li4Ti5O12 Nanoparticles for Rechargeable Li-Ion Batteries [J].
Lim, Jinsub ;
Choi, Eunseok ;
Mathew, Vinod ;
Kim, Donghan ;
Ahn, Docheon ;
Gim, Jihyeon ;
Kang, Sun-Ho ;
Kim, Jaekook .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A275-A280