Second Order Finite Volume Scheme for Euler Equations with Gravity which is Well-Balanced for General Equations of State and Grid Systems

被引:10
作者
Berberich, Jonas P. [1 ]
Chandrashekar, Praveen [2 ]
Klingenberg, Christian [1 ]
Roepke, Friedrich K. [3 ,4 ]
机构
[1] Univ Wurzburg, Dept Math, D-97074 Wurzburg, Germany
[2] TIFR Ctr Applicable Math, Bangalore 560065, Karnataka, India
[3] Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, Philosophenweg 12, D-69120 Heidelberg, Germany
[4] Heidelberger Inst Theoret Studien, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
关键词
Finite volume methods; well-balancing; compressible Euler equations with gravity; EXPLICIT STEADY-STATES; HYDROSTATIC RECONSTRUCTION;
D O I
10.4208/cicp.OA-2018-0152
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a second order well-balanced finite volume scheme for compressible Euler equations with a gravitational source term. The well-balanced property holds for arbitrary hydrostatic solutions of the corresponding Euler equations without any restriction on the equation of state. The hydrostatic solution must be known a priori either as an analytical formula or as a discrete solution at the grid points. The scheme can be applied on curvilinear meshes and in combination with any consistent numerical flux function and time stepping routines. These properties are demonstrated on a range of numerical tests.
引用
收藏
页码:599 / 630
页数:32
相关论文
共 41 条
  • [1] [Anonymous], 2014, THESIS
  • [2] [Anonymous], 2013, THESIS
  • [3] [Anonymous], PHYS GRUNDLAGEN MASS
  • [4] [Anonymous], J SCI COMPUTING
  • [5] [Anonymous], J COMPUTATIONAL PHYS
  • [6] [Anonymous], 7 AIAA ATM SPAC ENV
  • [7] [Anonymous], A A
  • [8] [Anonymous], 2016, AIAA J
  • [9] A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows
    Audusse, E
    Bouchut, F
    Bristeau, MO
    Klein, R
    Perthame, B
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) : 2050 - 2065
  • [10] Botta N, 2004, J COMPUT PHYS, V196, P539, DOI 10.1016/j.icp.2003.11.008