A Novel Deep Learning Method for Red Lesions Detection Using Hybrid Feature

被引:0
作者
Yan, Yao [1 ]
Gong, Jun [1 ]
Liu, Yangyang [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
来源
PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019) | 2019年
关键词
Diabetic Retinopathy; Red Lesion; Deep Learning; Feature Fusion; Random Forest Classifier; DIABETIC-RETINOPATHY; MICROANEURYSMS; SEGMENTATION; ALGORITHMS; ENSEMBLE;
D O I
10.1109/ccdc.2019.8833190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Red lesions detection is the key to controlling disease progression in Diabetic Retinopathy (DR) early stages. In this paper we propose a novel method for red lesions detection based on hybrid features, which consist of deep learned features extracted via an improved LeNet architecture and hand-crafted features. A class balanced cross-entropy loss in full connected layer of the modified LeNet network is used to reduce the interference from the unbalanced data types on learning features. Blood vessels segmentation based on the U-net Convolutional Network is applied to deal with the lesion candidates overlapping with vessels in the process of hand-crafted features extraction. Such ensemble vector of descriptors is used afterwards to identify true lesion candidates using a Random Forest classifier. The approach was evaluated based on the public dataset-DIARETDB1.
引用
收藏
页码:2287 / 2292
页数:6
相关论文
共 22 条
[1]   Neural Codes for Image Retrieval [J].
Babenko, Artem ;
Slesarev, Anton ;
Chigorin, Alexandr ;
Lempitsky, Victor .
COMPUTER VISION - ECCV 2014, PT I, 2014, 8689 :584-599
[2]   Algorithms for red lesion detection in Diabetic Retinopathy: A review [J].
Biyani, R. S. ;
Patre, B. M. .
BIOMEDICINE & PHARMACOTHERAPY, 2018, 107 :681-688
[3]   IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 [J].
Cho, N. H. ;
Shaw, J. E. ;
Karuranga, S. ;
Huang, Y. ;
Fernandes, J. D. da Rocha ;
Ohlrogge, A. W. ;
Malanda, B. .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2018, 138 :271-281
[4]   Microaneurysm detection using fully convolutional neural networks [J].
Chudzik, Piotr ;
Majumdar, Somshubra ;
Caliva, Francesco ;
Al-Diri, Bashir ;
Hunter, Andrew .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 :185-192
[5]   Algorithms for the Automated Detection of Diabetic Retinopathy Using Digital Fundus Images: A Review [J].
Faust, Oliver ;
Acharya U, Rajendra ;
Ng, E. Y. K. ;
Ng, Kwan-Hoong ;
Suri, Jasjit S. .
JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (01) :145-157
[6]  
Kawadiwale RB, 2015, ADV COMP C
[7]   The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXII The Twenty-Five-Year Progression of Retinopathy in Persons with Type 1 Diabetes [J].
Klein, Ronald ;
Knudtson, Michael D. ;
Lee, Kristine E. ;
Gangnon, Ronald ;
Klein, Barbara E. K. .
OPHTHALMOLOGY, 2008, 115 (11) :1859-1868
[8]   Ensemble of randomized soft decision trees for robust classification [J].
Kumar, G. Kishor ;
Viswanath, P. ;
Rao, A. Ananda .
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2016, 41 (03) :273-282
[9]  
Lay B., 1984, P SOC PHOTO-OPT INS, VVI, P165, DOI DOI 10.1117/12.936655
[10]  
Maninis Kevis-Kokitsi, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P140, DOI 10.1007/978-3-319-46723-8_17