Cloning and functional identification of slc5a12 as a sodium-coupled low-affinity transporter for monocarboxylates (SMCT2)

被引:116
作者
Srinivas, SR
Gopal, E
Zhuang, L
Itagaki, S
Martin, PM
Fei, YJ
Ganapathy, V
Prasad, PD [1 ]
机构
[1] Med Coll Georgia, Dept Obstet & Gynecol, Augusta, GA 30912 USA
[2] Med Coll Georgia, Dept Biochem & Mol Biol, Augusta, GA 30912 USA
关键词
cloning; functional characterization; low-affinity monocarboxylate transport; SLC5; sodium-coupled monocarboxylarte transport; Xenopus laevis oocyte;
D O I
10.1042/BJ20050927
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report in the present paper, on the isolation and functional characterization of slc5a12, the twelfth member of the SLC5 gene family, from mouse kidney. The slc5a12 cDNA codes for a protein of 619 amino acids. Heterologous expression of slc5a12 cDNA in mammalian cells induces Na+-dependent transport of lactate and nicotinate. Several other short-chain monocarboxylates compete with nicotinate for the cDNA-induced transport process. Expression of slc5a12 in Xenopus oocytes induces electrogenic and Na+-dependent transport of lactate, nicotinate, propionate and butyrate. The substrate specificity of slc5a12 is similar to that of slc5a8, an Na+-coupled transporter for monocarboxylates. However, the substrate affinities of s1c5a12 were much lower than those of slc5a8. slc5a12 mRNA is expressed in kidney, small intestine and skeletal muscle. In situ hybridization with sagittal sections of mouse kidney showed predominant expression of slc5a12 in the outer cortex. This is in contrast with slc5a8, which is expressed in the cortex as well as in the medulla. The physiological function of slc5a12 in the kidney is likely to mediate the reabsorption of lactate. In the intestinal tract, slc5a 12 is expressed in the proximal parts, whereas slc5a8 is expressed in the distal parts. The expression of slc5a12 in the proximal parts of the intestinal tract, where there is minimal bacterial colonization, suggests that the physiological function of slc5a12 is not to mediate the absorption of short-chain monocarboxylates derived from bacterial fermentation but rather to mediate the absorption of diet-derived short-chain monocarboxylates. Based on the functional and structural similarities between slc5a8 and slc5a12, we suggest that the two transporters be designated as SMCT1 (sodium-coupled monocarboxylate transporter 1) and SMCT2 respectively.
引用
收藏
页码:655 / 664
页数:10
相关论文
共 40 条
[1]  
[Anonymous], 1993, AM J PHYSIOL, V264, P761
[2]   Molecular cloning of a human, hemicholinium-3-sensitive choline transporter [J].
Apparsundaram, S ;
Ferguson, SM ;
George, AL ;
Blakely, RD .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 276 (03) :862-867
[3]   LACTATE-SODIUM COTRANSPORT IN RAT RENAL BRUSH-BORDER MEMBRANES [J].
BARACNIETO, M ;
MURER, H ;
KINNE, R .
AMERICAN JOURNAL OF PHYSIOLOGY, 1980, 239 (05) :F496-F506
[4]  
BARBARAT B, 1988, J BIOL CHEM, V263, P12190
[5]   THE HUMAN OSMOREGULATORY NA+/MYO-INOSITOL COTRANSPORTER GENE (SLC5A3) - MOLECULAR-CLONING AND LOCALIZATION TO CHROMOSOME-21 [J].
BERRY, GT ;
MALLEE, JJ ;
KWON, HM ;
RIM, JS ;
MULLA, WR ;
MUENKE, M ;
SPINNER, NB .
GENOMICS, 1995, 25 (02) :507-513
[6]   Lactate shuttles in nature [J].
Brooks, GA .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2002, 30 :258-264
[7]   PhyloDraw: a phylogenetic tree drawing system [J].
Choi, JH ;
Jung, HY ;
Kim, HS ;
Cho, HG .
BIOINFORMATICS, 2000, 16 (11) :1056-1058
[8]   The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter [J].
Coady, MJ ;
Chang, MH ;
Charron, FA ;
Plata, C ;
Wallendorff, B ;
Sah, JF ;
Markowitz, SD ;
Romero, ME ;
Lapointe, JY .
JOURNAL OF PHYSIOLOGY-LONDON, 2004, 557 (03) :719-731
[9]   RENAL TUBULAR REABSORPTION, METABOLIC UTILIZATION AND ISOMERIC FRACTIONATION OF LACTIC ACID IN THE DOG [J].
CRAIG, FN .
AMERICAN JOURNAL OF PHYSIOLOGY, 1946, 146 (01) :146-159
[10]   A glucose sensor hiding in a family of transporters [J].
Díez-Sampedro, A ;
Hirayama, BA ;
Osswald, C ;
Gorboulev, V ;
Baumgarten, K ;
Volk, C ;
Wright, EM ;
Koepsell, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (20) :11753-11758