Temperature peak-shift correction methods for NaI(Tl) and LaBr3(Ce) gamma-ray spectrum stabilisation

被引:64
作者
Casanovas, R. [1 ]
Morant, J. J. [2 ]
Salvado, M. [1 ]
机构
[1] Univ Rovira & Virgili, Fac Med & Ciencies Salut, Unitat Fis Med, ES-43201 Tarragona, Spain
[2] Univ Rovira & Virgili, Fac Med & Ciencies Salut, Serv Proteccio Radiol, ES-43201 Tarragona, Spain
关键词
NaI(Tl); LaBr3(Ce); Scintillation gamma-ray spectrometry; Temperature dependence; Peak-shift correction; Spectra stabilisation; SCINTILLATION DETECTOR SYSTEMS;
D O I
10.1016/j.radmeas.2012.06.001
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
NaI(Tl) and LaBr3(Ce) detectors are frequently operated under unstable temperature conditions when used in an open environment. These temperature changes result in a peak shift and spectral distortion during measurement. Two methods are proposed to stabilise the measured spectra; they are applied using a software algorithm, without the necessity of adjusting the gain. Both methods are based on the experimental observation that the relative channel displacement due to temperature changes is approximately the same for all channels. The first method corrects the spectrum using experimental data obtained under controlled conditions in the laboratory, and thus it only depends on the detector temperature. The second method uses one known peak in the spectrum to correct all of the channels: the NORM K-40 peak for the NaI(Tl) detector, the internal contaminant peak of La-138 for the LaBr3(Ce), or an external source when these two cannot be easily identified. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:588 / 595
页数:8
相关论文
共 7 条
[1]   Energy and resolution calibration of NaI(Tl) and LaBr3(Ce) scintillators and validation of an EGS5 Monte Carlo user code for efficiency calculations [J].
Casanovas, R. ;
Morant, J. J. ;
Salvado, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 675 :78-83
[2]   Temperature behavior of NaI(Tl) scintillation detectors [J].
Ianakiev, K. D. ;
Alexandrov, B. S. ;
Littlewood, P. B. ;
Browne, M. C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 607 (02) :432-438
[3]  
ICRU, 1994, 53 ICRU
[4]   Temperature dependences of LaBr3(Ce), LaCl3(Ce) and NaI(Tl) scintillators [J].
Moszynski, M. ;
Nassalski, A. ;
Syntfeld-Kazuch, A. ;
Szczesniak, T. ;
Czarnacki, W. ;
Wolski, D. ;
Pausch, G. ;
Stein, J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 568 (02) :739-751
[5]   Stabilizing scintillation detector systems by exploiting the temperature dependence of the light pulse decay time [J].
Pausch, G ;
Stein, J ;
Teofilov, N .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (05) :1849-1855
[6]   Stabilizing scintillation detector systems with pulsed LEDs: A method to derive the LED temperature from pulse height spectra [J].
Saucke, K ;
Pausch, G ;
Stein, J ;
Ortlepp, HG ;
Schotanus, P .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (06) :3160-3165
[7]   Temperature stabilization of a field instrument for uranium enrichment measurements [J].
Shepard, R ;
Wawrowski, S ;
Charland, M ;
Roberts, H ;
Moslinger, M .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1997, 44 (03) :568-571