Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology

被引:112
作者
Srinivasan, Pratul P. [1 ,5 ]
Heflin, Stephanie J. [2 ]
Izatt, Joseph A. [1 ,2 ]
Arshavsky, Vadim Y. [2 ,3 ]
Farsiu, Sina [1 ,2 ,4 ,5 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Med Ctr, Dept Ophthalmol, Durham, NC 27710 USA
[3] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[5] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
关键词
OPTICAL COHERENCE TOMOGRAPHY; MACHINE LEARNING CLASSIFIERS; INDIRECT OPHTHALMOSCOPY VIO; VESSEL SEGMENTATION; RODENT RETINA; CLASSIFICATION; DEGENERATION; PARAMETERS; THICKNESS; EYES;
D O I
10.1364/BOE.5.000348
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to high-quality scans from mice with no missing layers or visible pathology. This paper presents an automatic approach for segmenting retinal layers in spectral domain OCT images using sparsity based denoising, support vector machines, graph theory, and dynamic programming (S-GTDP). Results show that this method accurately segments all present retinal layer boundaries, which can range from seven to ten, in wild-type and rhodopsin knockout mice as compared to manual segmentation and has a more accurate performance as compared to the commercial automated Diver segmentation software. (C) 2014 Optical Society of America
引用
收藏
页码:348 / 365
页数:18
相关论文
共 37 条
[1]  
Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
[2]   A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes [J].
Antony, Bhavna J. ;
Abramoff, Michael D. ;
Harper, Matthew M. ;
Jeong, Woojin ;
Sohn, Elliott H. ;
Kwon, Young H. ;
Kardon, Randy ;
Garvin, Mona K. .
BIOMEDICAL OPTICS EXPRESS, 2013, 4 (12) :2712-2728
[3]   Functional and structural modifications during retinal degeneration in the rd10 mouse [J].
Barhoum, R. ;
Martinez-Navarrete, G. ;
Corrochano, S. ;
Germain, F. ;
Fernandez-Sanchez, L. ;
De La Rosa, E. J. ;
De La Villa, P. ;
Cuenca, N. .
NEUROSCIENCE, 2008, 155 (03) :698-713
[4]   Trained artificial neural network for glaucoma diagnosis using visual field data - A comparison with conventional algorithms [J].
Bizios, Dimitrios ;
Heijl, Anders ;
Bengtsson, Boel .
JOURNAL OF GLAUCOMA, 2007, 16 (01) :20-28
[5]   Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT [J].
Bizios, Dimitrios ;
Heijl, Anders ;
Hougaard, Jesper Leth ;
Bengtsson, Boel .
ACTA OPHTHALMOLOGICA, 2010, 88 (01) :44-52
[6]   Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes [J].
Bowd, Christopher ;
Hao, Jiucang ;
Tavares, Ivan M. ;
Medeiros, Felipe A. ;
Zangwill, Linda M. ;
Lee, Te-Won ;
Sample, Pamela A. ;
Weinreb, Robert N. ;
Goldbaum, Michael H. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2008, 49 (03) :945-953
[7]   Optical coherence tomography machine learning classifiers for glaucoma detection: A preliminary study [J].
Burgansky-Eliash, Z ;
Wollstein, G ;
Chu, TJ ;
Ramsey, JD ;
Glymour, C ;
Noecker, RJ ;
Ishikawa, H ;
Schuman, JS .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46 (11) :4147-4152
[8]   Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images [J].
Chiu, Stephanie J. ;
Izatt, Joseph A. ;
O'Connell, Rachelle V. ;
Winter, Katrina P. ;
Toth, Cynthia A. ;
Farsiu, Sina .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (01) :53-61
[9]   Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation [J].
Chiu, Stephanie J. ;
Li, Xiao T. ;
Nicholas, Peter ;
Toth, Cynthia A. ;
Izatt, Joseph A. ;
Farsiu, Sina .
OPTICS EXPRESS, 2010, 18 (18) :19413-19428
[10]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095