Towards a fully RL-based Market Simulator

被引:8
作者
Ardon, Leo [1 ]
Vadori, Nelson [1 ]
Spooner, Thomas [1 ]
Xu, Mengda [1 ]
Vann, Jared [1 ]
Ganesh, Sumitra [1 ]
机构
[1] JP Morgan AI Res, Pittsburgh, PA 15213 USA
来源
ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE | 2021年
关键词
multi-agent; reinforcement learning; market making;
D O I
10.1145/3490354.3494372
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We present a new financial framework where two families of RL-based agents representing the Liquidity Providers and Liquidity Takers learn simultaneously to satisfy their objective. Thanks to a parametrized reward formulation and the use of Deep RL, each group learns a shared policy able to generalize and interpolate over a wide range of behaviors. This is a step towards a fully RL-based market simulator replicating complex market conditions particularly suited to study the dynamics of the financial market under various scenarios.
引用
收藏
页数:9
相关论文
共 18 条
[1]   DEALERSHIP MARKET - MARKET-MAKING WITH INVENTORY [J].
AMIHUD, Y ;
MENDELSON, H .
JOURNAL OF FINANCIAL ECONOMICS, 1980, 8 (01) :31-53
[2]   High-frequency trading in a limit order book [J].
Avellaneda, Marco ;
Stoikov, Sasha .
QUANTITATIVE FINANCE, 2008, 8 (03) :217-224
[3]  
Bernstein D. S., 2000, P 16 C UNCERTAINTY A, P32
[4]  
Brockman G, 2016, Arxiv, DOI arXiv:1606.01540
[5]  
Chan N. T., 2001, ELECT MARKET MAKER
[6]  
Cont R, 2021, OPER RES, V2021
[7]  
Cui W., 2012, 2012 IEEE C COMP INT, DOI DOI 10.1109/CIFER.2012.6327798
[8]  
Das Sanmay, 2003, P INT WORKSHOP COMPL
[9]  
Ganesh S, 2019, Arxiv, DOI [arXiv:1911.05892, DOI 10.48550/ARXIV.1911.05892]
[10]   MARKET MICROSTRUCTURE [J].
GARMAN, MB .
JOURNAL OF FINANCIAL ECONOMICS, 1976, 3 (03) :257-275