Global input-to-state stabilization with quantized feedback for discrete-time piecewise affine systems with time delays

被引:6
作者
Mu Xiaowu [1 ,2 ]
Gao Yang [1 ,3 ,4 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[2] Beijing Univ, Grad Sch, Beijing 100049, Peoples R China
[3] Daqing Normal Univ, Dept Math, Daqing 163712, Peoples R China
[4] Harbin Inst Technol, Grad Sch, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete systems; input-to-state stability; piecewise affine systems; quantized feedback; stabilization; SMALL-GAIN THEOREM; NONLINEAR-SYSTEMS; HYBRID SYSTEMS; STABILITY; ISS;
D O I
10.1007/s11424-013-1082-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, global input-to-state stabilization with quantized feedback for discrete-time piecewise affine systems (PWA) with time delays are considered. Both feedback with time delays and feedback without time delays are considered. Piecewise quadratic ISS-Lyapunov functions are adopted. Both Lyapunov-Razumikhin and Lyapunov-Krasovskii methods are adopted. The theorems for global input-to-state stabilization with quantized feedback of discrete PWA systems with time delays are shown.
引用
收藏
页码:925 / 939
页数:15
相关论文
共 19 条
[11]  
Kalman R.E., 1956, P S NONL CIRC THEOR, VVII
[12]   Global input-to-state stability and stabilization of discrete-time piecewise affine systems [J].
Lazar, M. ;
Heemels, W. P. M. H. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2008, 2 (03) :721-734
[13]   Uniform stability and ISS of discrete-time impulsive hybrid systems [J].
Liu, Bin ;
Hill, David J. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (02) :319-333
[14]   Input-to-state stability for discrete time-delay systems via the Razumikhin technique [J].
Liu, Bin ;
Hill, David J. .
SYSTEMS & CONTROL LETTERS, 2009, 58 (08) :567-575
[15]   Input-to-state stability of impulsive and switching hybrid systems with time-delay [J].
Liu, Jun ;
Liu, Xinzhi ;
Xie, Wei-Chau .
AUTOMATICA, 2011, 47 (05) :899-908
[16]   A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems [J].
Pepe, P. ;
Jiang, Z. -P. .
SYSTEMS & CONTROL LETTERS, 2006, 55 (12) :1006-1014
[17]   FURTHER FACTS ABOUT INPUT TO STATE STABILIZATION [J].
SONTAG, ED .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (04) :473-476
[18]   SMOOTH STABILIZATION IMPLIES COPRIME FACTORIZATION [J].
SONTAG, ED .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (04) :435-443
[19]   Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem [J].
Teel, AR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (07) :960-964