Global input-to-state stabilization with quantized feedback for discrete-time piecewise affine systems with time delays

被引:6
作者
Mu Xiaowu [1 ,2 ]
Gao Yang [1 ,3 ,4 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
[2] Beijing Univ, Grad Sch, Beijing 100049, Peoples R China
[3] Daqing Normal Univ, Dept Math, Daqing 163712, Peoples R China
[4] Harbin Inst Technol, Grad Sch, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete systems; input-to-state stability; piecewise affine systems; quantized feedback; stabilization; SMALL-GAIN THEOREM; NONLINEAR-SYSTEMS; HYBRID SYSTEMS; STABILITY; ISS;
D O I
10.1007/s11424-013-1082-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, global input-to-state stabilization with quantized feedback for discrete-time piecewise affine systems (PWA) with time delays are considered. Both feedback with time delays and feedback without time delays are considered. Piecewise quadratic ISS-Lyapunov functions are adopted. Both Lyapunov-Razumikhin and Lyapunov-Krasovskii methods are adopted. The theorems for global input-to-state stabilization with quantized feedback of discrete PWA systems with time delays are shown.
引用
收藏
页码:925 / 939
页数:15
相关论文
共 19 条
[1]   A characterization of integral input-to-state stability [J].
Angeli, D ;
Sontag, ED ;
Wang, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (06) :1082-1097
[2]  
Cai CH, 2005, IEEE DECIS CONTR P, P5403
[3]   Characterizations of input-to-state stability for hybrid systems [J].
Cai, Chaohong ;
Teel, Andrew R. .
SYSTEMS & CONTROL LETTERS, 2009, 58 (01) :47-53
[4]   Discontinuous stabilization of nonlinear systems: Quantized and switching controls [J].
Ceragioli, Francesca ;
De Persis, Claudio .
SYSTEMS & CONTROL LETTERS, 2007, 56 (7-8) :461-473
[5]   The sector bound approach to quantized feedback control [J].
Fu, MY ;
Xie, LH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1698-1711
[6]  
Hale J., 1993, INTRO FUNCTIONAL DIF, DOI [10.1007/978-1-4612-4342-7, DOI 10.1007/978-1-4612-4342-7]
[7]   Input-to-state stability and interconnections of discontinuous dynamical systems [J].
Heemels, W. P. M. H. ;
Weiland, S. .
AUTOMATICA, 2008, 44 (12) :3079-3086
[8]   Lyapunov conditions for input-to-state stability of impulsive systems [J].
Hespanha, Joao P. ;
Liberzon, Daniel ;
Teel, Andrew R. .
AUTOMATICA, 2008, 44 (11) :2735-2744
[9]   A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems [J].
Jiang, ZP ;
Mareels, IMY ;
Wang, Y .
AUTOMATICA, 1996, 32 (08) :1211-1215
[10]   Input-to-state stability for discrete-time nonlinear systems [J].
Jiang, ZP ;
Wang, Y .
AUTOMATICA, 2001, 37 (06) :857-869