NCTN Assessment on Current Applications of Radiomics in Oncology

被引:45
作者
Nie, Ke [1 ]
Al-Hallaq, Hania [2 ]
Li, X. Allen [3 ]
Benedict, Stanley H. [4 ]
Sohn, Jason W. [5 ]
Moran, Jean M. [6 ]
Fan, Yong [7 ]
Huang, Mi [8 ]
Knopp, Michael, V [9 ]
Michalski, Jeff M. [10 ]
Monroe, James [11 ]
Obcemea, Ceferino [12 ]
Tsien, Christina, I [10 ]
Solberg, Timothy [13 ]
Wu, Jackie [14 ]
Xia, Ping [15 ]
Xiao, Ying [8 ]
El Naqa, Ssam [2 ]
机构
[1] Rutgers Robert Wood Johnson Med Sch, Rutgers Canc Inst New Jersey, Dept Radiat Oncol, New Brunswick, NJ 08903 USA
[2] Univ Chicago, Dept Radiat & Cellular Oncol, Chicago, IL 60637 USA
[3] Med Coll Wisconsin, Dept Radiat Oncol, Milwaukee, WI 53226 USA
[4] Univ Calif Davis, Dept Radiat Oncol, Sacramento, CA 95817 USA
[5] Allegheny Hlth Network, Dept Radiat Oncol, Pittsburgh, PA USA
[6] Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48109 USA
[7] Univ Penn, Dept Radiol, Perelman Sch Med, Philadelphia, PA 19104 USA
[8] Univ Penn, Perelman Sch Med, Dept Radiat Oncol, Philadelphia, PA 19104 USA
[9] Ohio State Univ, Dept Radiol, Div Imaging Sci, Columbus, OH 43210 USA
[10] Washington Univ, Sch Med, Dept Radiat Oncol, St Louis, MO USA
[11] St Anthonys Canc Ctr, Dept Radiat Oncol, St Louis, MO USA
[12] NCI, Radiat Res Program, Bethesda, MD 20892 USA
[13] Univ Calif San Francisco, Dept Radiat Oncol, San Francisco, CA USA
[14] Duke Univ, Dept Radiat Oncol, Durham, NC USA
[15] Cleveland Clin, Dept Radiat Oncol, Cleveland, OH 44106 USA
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2019年 / 104卷 / 02期
关键词
CELL LUNG-CANCER; QUANTITATIVE IMAGING NETWORK; FUNCTIONAL TUMOR VOLUME; EGFR MUTATION STATUS; BREAST-CANCER; NEOADJUVANT CHEMOTHERAPY; TEXTURAL FEATURES; F-18-FDG PET; FDG-PET; RADIATION-THERAPY;
D O I
10.1016/j.ijrobp.2019.01.087
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Radiomics is a fast-growing research area based on converting standard-of-care imaging into quantitative minable data and building subsequent predictive models to personalize treatment. Radiomics has been proposed as a study objective in clinical trial concepts and a potential biomarker for stratifying patients across interventional treatment arms. In recognizing the growing importance of radiomics in oncology, a group of medical physicists and clinicians from NRG Oncology reviewed the current status of the field and identified critical issues, providing a general assessment and early recommendations for incorporation in oncology studies. (C) 2019 Published by Elsevier Inc.
引用
收藏
页码:302 / 315
页数:14
相关论文
共 140 条
[1]   Defining a Radiomic Response Phenotype: A Pilot Study using targeted therapy in NSCLC [J].
Aerts, Hugo J. W. L. ;
Grossmann, Patrick ;
Tan, Yongqiang ;
Oxnard, Geoffrey G. ;
Rizvi, Naiyer ;
Schwartz, Lawrence H. ;
Zhao, Binsheng .
SCIENTIFIC REPORTS, 2016, 6
[2]  
Aljabar P., 2017, The cutting edge: Delineating contours with deep learning
[3]   Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research [J].
Apte, Aditya P. ;
Iyer, Aditi ;
Crispin-Ortuzar, Mireia ;
Pandya, Rutu ;
van Dijk, Lisanne V. ;
Spezi, Emiliano ;
Thor, Maria ;
Um, Hyemin ;
Veeraraghavan, Harini ;
Oh, Jung Hun ;
Shukla-Dave, Amita ;
Deasy, Joseph O. .
MEDICAL PHYSICS, 2018, 45 (08) :3713-3720
[4]   Radiomics with artificial intelligence for precision medicine in radiation therapy [J].
Arimura, Hidetaka ;
Soufi, Mazen ;
Kamezawa, Hidemi ;
Ninomiya, Kenta ;
Yamada, Masahiro .
JOURNAL OF RADIATION RESEARCH, 2019, 60 (01) :150-157
[5]   Beyond imaging: The promise of radiomics [J].
Avanzo, Michele ;
Stancanello, Joseph ;
El Naqa, Issam .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 38 :122-139
[6]   Predicting Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer by Using MR Imaging and Quantitative 1H MR Spectroscopy [J].
Baek, Hyeon-Man ;
Chen, Jeon-Hor ;
Nie, Ke ;
Yu, Hon J. ;
Bahri, Shadfar ;
Mehta, Rita S. ;
Nalcioglu, Orhan ;
Su, Min-Ying .
RADIOLOGY, 2009, 251 (03) :653-662
[7]   On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers [J].
Bagher-Ebadian, Hassan ;
Siddiqui, Farzan ;
Liu, Chang ;
Movsas, Benjamin ;
Chetty, Indrin J. .
MEDICAL PHYSICS, 2017, 44 (05) :1755-1770
[8]   Raise standards for preclinical cancer research [J].
Begley, C. Glenn ;
Ellis, Lee M. .
NATURE, 2012, 483 (7391) :531-533
[9]   Multi-view longitudinal CNN for multiple sclerosis lesion segmentation [J].
Birenbaum, Ariel ;
Greenspan, Hayit .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 65 :111-118
[10]   Standards for PET Image Acquisition and Quantitative Data Analysis [J].
Boellaard, Ronald .
JOURNAL OF NUCLEAR MEDICINE, 2009, 50 :11S-20S