Metric-affine gauge theory of gravity - II. Exact solutions

被引:81
作者
Hehl, FW
Macias, A
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340, DF, Mexico
[2] Univ Cologne, Inst Theoret Phys, D-50923 Cologne, Germany
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 1999年 / 8卷 / 04期
关键词
D O I
10.1142/S0218271899000316
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In continuing our series on metric-affine gravity (see Gronwald, Int. J. Mod. Phys. D6, 263 (1997) for Part I), we review the exact solutions of this theory.
引用
收藏
页码:399 / 416
页数:18
相关论文
共 52 条
[1]  
[Anonymous], 1992, SPACETIME GRAVITATIO
[2]  
Baekler P., 1986, Proceedings of the Fourth Marcel Grossmann Meeting on General Relativity, P277
[3]   Colliding plane waves in terms of Jacobi functions [J].
Bretón, N ;
García, A ;
Macías, A ;
Yáñez, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (11) :6051-6065
[4]   REPRESENTATION OF THE EINSTEIN-PROCA FIELD BY AN A4-STAR [J].
BUCHDAHL, HA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (08) :1235-1238
[5]   Quasilocal quantities for general relativity and other gravity theories [J].
Chen, CM ;
Nester, JM .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (04) :1279-1304
[6]   Non-Riemannian gravity and the Einstein-Proca system [J].
Dereli, T ;
Onder, M ;
Schray, J ;
Tucker, RW ;
Wang, C .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (08) :L103-L109
[7]   GENERAL COVARIANT ENERGY-MOMENTUM CONSERVATION LAW IN GENERAL SPACETIME [J].
DUAN, YS ;
LIU, JC ;
DONG, XG .
GENERAL RELATIVITY AND GRAVITATION, 1988, 20 (05) :485-496
[8]  
Esser W, 1996, THESIS U COLOGNE
[9]   Colliding waves in metric-affine gravity [J].
Garcia, A ;
Lammerzahl, C ;
Macias, A ;
Mielke, EW ;
Socorro, J .
PHYSICAL REVIEW D, 1998, 57 (06) :3457-3462
[10]   Electrovacuum sector of the MAG theories [J].
García, A ;
Macías, A ;
Socorro, J .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (01) :93-100