Sharp Lp Estimates on BMO

被引:31
作者
Slavin, Leonid [1 ]
Vasyunin, Vasily [2 ]
机构
[1] Univ Cincinnati, Cincinnati, OH 45221 USA
[2] RAS, VA Steldov Math Inst, St Petersburg Dept, Moscow, Russia
基金
美国国家科学基金会;
关键词
BMO; norm equivalence; explicit Bellman function; Monge-Ampere equation; BELLMAN FUNCTIONS; MAXIMAL OPERATORS; INEQUALITIES;
D O I
10.1512/iumj.2012.61.4651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the upper and lower Bellman functions for the L-p (quasi)-norms of BMO functions. These appear as solution to a series of Monge-Ampere boundary value problems on a non-convex plane domain. The knowledge of the Bellman functions leads to sharp constants in inequalities relating average oscillations of BMO functions and various BMO norms.
引用
收藏
页码:1051 / 1110
页数:60
相关论文
共 21 条
[1]  
BELLMAN R., 2010, DYNAMIC PROGRAMMING
[2]   BOUNDARY-VALUE-PROBLEMS AND SHARP INEQUALITIES FOR MARTINGALE TRANSFORMS [J].
BURKHOLDER, DL .
ANNALS OF PROBABILITY, 1984, 12 (03) :647-702
[3]  
BURKHOLDER DL, 1988, ASTERISQUE, P75
[4]  
IVANISHVILI P., 2012, PREPRINT, P1
[5]   On Bellman function for extremal problems in BMO [J].
Ivanishvili, Paata ;
Osipov, Nikolay N. ;
Stolyarov, Dmitriy M. ;
Vasyunin, Vasily I. ;
Zatitskiy, Pavel B. .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (11-12) :561-564
[6]   The Bellman functions of dyadic-like maximal operators and related inequalities [J].
Melas, AD .
ADVANCES IN MATHEMATICS, 2005, 192 (02) :310-340
[7]  
Melas AD, 2010, T AM MATH SOC, V362, P1571
[8]   Sharp general local estimates for dyadic-like maximal operators and related Bellman functions [J].
Melas, Antonios D. .
ADVANCES IN MATHEMATICS, 2009, 220 (02) :367-426
[9]  
Nazarov F, 2001, OPER THEOR, V129, P393
[10]   The bellman functions and two-weight inequalities for Haar multipliers [J].
Nazarov, F ;
Treil, S ;
Volberg, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :909-928