On the dimension of the solution set to the homogeneous linear functional differential equation of the first order

被引:4
作者
Domoshnitsky, Alexander [1 ]
Hakl, Robert [2 ]
Puza, Bedrich [2 ]
机构
[1] Ariel Univ Ctr Samaria, Dept Math & Comp Sci, IL-44837 Ariel, Israel
[2] Acad Sci Czech Republic, Inst Math, Branch Brno, Brno 61662, Czech Republic
关键词
functional differential equation; boundary value problem; differential inequality; solution set; BOUNDARY-VALUE PROBLEM; UNIQUE SOLVABILITY;
D O I
10.1007/s10587-012-0062-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the homogeneous equation u'(t) = l(u)(t) for a,e, t is an element of[a, b] where a"": C([a, b];a"e) -> L([a, b];a"e) is a linear bounded operator. The efficient conditions guaranteeing that the solution set to the equation considered is one-dimensional, generated by a positive monotone function, are established. The results obtained are applied to get new efficient conditions sufficient for the solvability of a class of boundary value problems for first order linear functional differential equations.
引用
收藏
页码:1033 / 1053
页数:21
相关论文
共 14 条
[1]  
AZBELEV N. V., 1991, Introduction to the Theory of Functionaldifferential Equations
[2]   Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations [J].
Bravyi, E ;
Hakl, R ;
Lomtatidze, A .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (03) :513-530
[3]  
DOMOSHNITSKY A, 2008, DYNAM CONT DIS SER A, V15, P769
[4]   Maximum Principles and Boundary Value Problems for First-Order Neutral Functional Differential Equations [J].
Domoshnitsky, Alexander ;
Maghakyan, Abraham ;
Shklyar, Roman .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
[5]  
Hakl R., 2001, MEM DIFFERENTIAL EQU, V23, P51
[6]  
Hakl R., 2002, MATHEMATICA, V10
[7]  
HAKL R., 2004, ABSTR APPL ANAL, P45
[8]   NONPOSITIVE SOLUTIONS OF ONE FUNCTIONAL DIFFERENTIAL INEQUALITY [J].
Lomtatidze, A. ;
Oplustil, Z. ;
Sremr, J. .
NONLINEAR OSCILLATIONS, 2009, 12 (04) :474-509
[9]  
Lomtatidze A, 2007, MEM DIFFER EQU MATH, V41, P69
[10]  
Lomtatidze A, 2009, FASC MATH, V41, P81