共 16 条
Comparison of heat transfer distributions on a flat plate impinged by under-expanded jets from a convergent nozzle and a circular orifice
被引:6
作者:
Limaye, M. D.
[1
]
Vedula, R. P.
[2
]
Prabhu, S. V.
[2
]
机构:
[1] DRDO, R&D EE, Pune 411015, Maharashtra, India
[2] Indian Inst Technol, Dept Mech Engn, Bombay 400076, Maharashtra, India
关键词:
RECOVERY TEMPERATURE;
TRANSFER ENHANCEMENT;
FLOW;
FIELD;
D O I:
10.1007/s00231-012-1089-4
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
Experiments are carried out for a circular orifice and a nozzle for the same contraction ratio to explore the heat transfer characteristics. The pressure ratios covered in this study are 2.36, 3.04, 3.72, 4.4 and 5.08 for jet to plate distances (z/d) of 2, 4, 6 and 8. The presence of vena contracta and absence of the stagnation bubble in the orifice flow are confirmed from the surface pressure distributions. It is found that higher Nusselt number for the orifice than the nozzle are due to different shock structures and shear layer dynamics. Peak Nusselt number is found as high as 84 % than that for the nozzle. In the wall jet region, the heat transfer rates for the orifice and nozzle are almost of the same order, thus producing steeper temperature gradients under similar operating conditions. The average heat transfer rates are almost 25 % higher for the orifice than that of the nozzle. The recovery factors are in general higher in case of orifice than the nozzle. However, this has not resulted in decreasing the heat transfer rates due to shear layer dynamics.
引用
收藏
页码:309 / 326
页数:18
相关论文