Estimating intrinsic and extrinsic noise from single-cell gene expression measurements

被引:19
作者
Fu, Audrey Qiuyan [1 ,2 ,3 ]
Pachter, Lior [4 ,5 ,6 ]
机构
[1] Univ Idaho, Dept Stat Sci, Moscow, ID 83844 USA
[2] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[3] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[4] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Comp Sci, Berkeley, CA 94720 USA
关键词
gene expression; noise; optimal estimators; single cell; SYSTEMS; ORIGINS;
D O I
10.1515/sagmb-2016-0002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gene expression is stochastic and displays variation ("noise") both within and between cells. Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by applying the law of total variance to data from two-reporter assays that probe expression of identically regulated gene pairs in single cells. We examine established formulas [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): "Stochastic gene expression in a single cell," Science, 297, 1183-1186.] for the estimation of intrinsic and extrinsic noise and provide interpretations of them in terms of a hierarchical model. This allows us to derive alternative estimators that minimize bias or mean squared error. We provide a geometric interpretation of these results that clarifies the interpretation in [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): " Stochastic gene expression in a single cell," Science, 297, 1183-1186.]. We also demonstrate through simulation and re-analysis of published data that the distribution assumptions underlying the hierarchical model have to be satisfied for the estimators to produce sensible results, which highlights the importance of normalization.
引用
收藏
页码:447 / 471
页数:25
相关论文
共 14 条
[1]   Stochastic gene expression in a single cell [J].
Elowitz, MB ;
Levine, AJ ;
Siggia, ED ;
Swain, PS .
SCIENCE, 2002, 297 (5584) :1183-1186
[2]   QUANTIFYING INTRINSIC AND EXTRINSIC NOISE IN GENE TRANSCRIPTION USING THE LINEAR NOISE APPROXIMATION: AN APPLICATION TO SINGLE CELL DATA [J].
Finkenstadt, Barbel ;
Woodcock, Dan J. ;
Komorowski, Michal ;
Harper, Claire V. ;
Davis, Julian R. E. ;
White, Mike R. H. ;
Rand, David A. .
ANNALS OF APPLIED STATISTICS, 2013, 7 (04) :1960-1982
[4]   Separating intrinsic from extrinsic fluctuations in dynamic biological systems [J].
Hilfinger, Andreas ;
Paulsson, Johan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (29) :12167-12172
[5]  
James W., 1961, P 4 BERK S MATH STAT, V1, P361, DOI DOI 10.1007/978-1-4612-0919-5
[6]   Accounting for extrinsic variability in the estimation of stochastic rate constants [J].
Koeppl, Heinz ;
Zechner, Christoph ;
Ganguly, Arnab ;
Pelet, Serge ;
Peter, Matthias .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2012, 22 (10) :1103-1119
[7]   Decomposing Noise in Biochemical Signaling Systems Highlights the Role of Protein Degradation [J].
Komorowski, Michel ;
Miekisz, Jacek ;
Stumpf, Michael P. H. .
BIOPHYSICAL JOURNAL, 2013, 104 (08) :1783-1793
[8]   Quantifying Origins of Cell-to-Cell Variations in Gene Expression [J].
Rausenberger, Julia ;
Kollmann, Markus .
BIOPHYSICAL JOURNAL, 2008, 95 (10) :4523-4528
[9]   MicroRNA control of protein expression noise [J].
Schmiedel, Joern M. ;
Klemm, Sandy L. ;
Zheng, Yannan ;
Sahay, Apratim ;
Bluethgen, Nils ;
Marks, Debora S. ;
van Oudenaarden, Alexander .
SCIENCE, 2015, 348 (6230) :128-132
[10]   Cell-to-Cell Variability in the Propensity to Transcribe Explains Correlated Fluctuations in Gene Expression [J].
Sherman, Marc S. ;
Lorenz, Kim ;
Lanier, M. Hunter ;
Cohen, Barak A. .
CELL SYSTEMS, 2015, 1 (05) :315-325