Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods

被引:67
作者
Kong, Xiangyi [1 ,2 ]
Gong, Shun [3 ]
Su, Lijuan [4 ,5 ]
Howard, Newton [6 ,7 ]
Kong, Yanguo [1 ]
机构
[1] Chinese Acad Med Sci, Peking Union Med Coll Hosp, Dept Neurosurg, 1 Shuaifuyuan Hutong, Beijing 100730, Peoples R China
[2] Chinese Acad Med Sci, Peking Union Med Coll, Dept Breast Surg Oncol, China Natl Canc Ctr,Canc Hosp, Panjiayuan Nanli 17, Beijing 100021, Peoples R China
[3] Second Mil Med Univ, Changzheng Hosp, PLA Inst Neurosurg, Dept Neurosurg,Shanghai Inst Neurosurg, 415 Fengyang Rd, Shanghai 200003, Peoples R China
[4] Zhejiang Univ, Coll Comp Sci & Technol, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
[5] Tencent Technol Shenzhen Co Ltd, Healthcare Big Data lab, Kejizhongyi Ave,Hitech Pk, Shenzhen 518057, Peoples R China
[6] MIT, Synthet Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] Univ Oxford, Computat Neurosci Lab, Oxford OX1 3QD, England
关键词
Automatic acromegaly diagnosis; Artificial intelligence; Machine learning; Face recognition; Convolutional neural network; MEDICAL PROGRESS; DIAGNOSIS; CLASSIFICATION; FACE;
D O I
10.1016/j.ebiom.2017.12.015
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Automatic early detection of acromegaly is theoretically possible from facial photographs, which can lessen the prevalence and increase the cure probability. Methods: In this study, several popular machine learning algorithms were used to train a retrospective development dataset consisting of 527 acromegaly patients and 596 normal subjects. We firstly used OpenCV to detect the face bounding rectangle box, and then cropped and resized it to the same pixel dimensions. From the detected faces, locations of facial landmarks which were the potential clinical indicators were extracted. Frontalization was then adopted to synthesize frontal facing views to improve the performance. Several popular machine learning methods including LM, KNN, SVM, RT, CNN, and EM were used to automatically identify acromegaly from the detected facial photographs, extracted facial landmarks, and synthesized frontal faces. The trained models were evaluated using a separate dataset, of which half were diagnosed as acromegaly by growth hormone suppression test. Results: The best result of our proposed methods showed a PPV of 96%, a NPV of 95%, a sensitivity of 96% and a specificity of 96%. Conclusions: Artificial intelligence can automatically early detect acromegaly with a high sensitivity and specificity. (c) 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:94 / 102
页数:9
相关论文
共 23 条
[1]  
[Anonymous], NEUROIMAGE
[2]  
CHANSON P, 1989, LANCET, V1, P1263
[3]  
CHOLLET F, 2016, KERAS DOCUMENTATION
[4]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[5]  
Gencturk B, 2013, 2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), P817, DOI 10.1109/TSP.2013.6614052
[6]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[7]   Artificial intelligence in medicine [J].
Hamet, Pavel ;
Tremblay, Johanne .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2017, 69 :S36-S40
[8]   An automated smartphone-based diagnostic assay for point-of-care semen analysis [J].
Kanakasabapathy, Manoj Kumar ;
Sadasivam, Magesh ;
Singh, Anupriya ;
Preston, Collin ;
Thirumalaraju, Prudhvi ;
Venkataraman, Maanasa ;
Bormann, Charles L. ;
Draz, Mohamed Shehata ;
Petrozza, John C. ;
Shafiee, Hadi .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (382)
[9]   Acromegaly: An Endocrine Society Clinical Practice Guideline [J].
Katznelson, Laurence ;
Laws, Edward R., Jr. ;
Melmed, Shlomo ;
Molitch, Mark E. ;
Murad, Mohammad Hassan ;
Utz, Andrea ;
Wass, John A. H. .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2014, 99 (11) :3933-3951
[10]   22q11.2 deletion syndrome in diverse populations [J].
Kruszka, Paul ;
Addissie, Yonit A. ;
McGinn, Daniel E. ;
Porras, Antonio R. ;
Biggs, Elijah ;
Share, Matthew ;
Crowley, T. Blaine ;
Chung, Brian H. Y. ;
Mok, Gary T. K. ;
Mak, Christopher C. Y. ;
Muthukumarasamy, Premala ;
Thong, Meow-Keong ;
Sirisena, Nirmala D. ;
Dissanayake, Vajira H. W. ;
Paththinige, C. Sampath ;
Prabodha, L. B. Lahiru ;
Mishra, Rupesh ;
Shotelersuk, Vorasuk ;
Ekure, Ekanem Nsikak ;
Sokunbi, Ogochukwu Jidechukwu ;
Kalu, Nnenna ;
Ferreira, Carlos R. ;
Duncan, Jordann-Mishael ;
Patil, Siddaramappa Jagdish ;
Jones, Kelly L. ;
Kaplan, Julie D. ;
Abdul-Rahman, Omar A. ;
Uwineza, Annette ;
Mutesa, Leon ;
Moresco, Angelica ;
Gabriela Obregon, Maria ;
Richieri-Costa, Antonio ;
Gil-da-Silva-Lopes, Vera L. ;
Adeyemo, Adebowale A. ;
Summar, Marshall ;
Zackai, Elaine H. ;
McDonald-McGinn, Donna M. ;
Linguraru, Marius George ;
Muenke, Maximilian .
AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2017, 173 (04) :879-888