Structure Annotation of All Mass Spectra in Untargeted Metabolomics

被引:134
作者
Blazenovic, Ivana [1 ]
Kind, Tobias [1 ]
Sa, Michael R. [1 ]
Ji, Jian [2 ]
Vaniya, Arpana [1 ]
Wancewicz, Benjamin [1 ]
Roberts, Bryan S. [1 ]
Torbasinovic, Hrvoje [3 ]
Lee, Tack [4 ]
Mehta, Sajjan S. [1 ]
Showalter, Megan R. [1 ]
Song, Hosook [4 ]
Kwok, Jessica [1 ]
Jahn, Dieter [5 ,6 ]
Kim, Jayoung [7 ,8 ,9 ,10 ,11 ]
Fiehn, Oliver [1 ]
机构
[1] Univ Calif Davis, West Coast Metabol Ctr, Davis, CA 95616 USA
[2] Jiangnan Univ, Sch Food Sci, State Key Lab Food Sci & Technol, Wuxi 330047, Jiangsu, Peoples R China
[3] Inovatus Ltd, Zagreb 10000, Croatia
[4] Inha Univ, Dept Urol, Coll Med, Incheon 22212, South Korea
[5] Tech Univ Carolo Wilhelmina Braunschweig, Inst Microbiol, D-38106 Braunschweig, Germany
[6] Tech Univ Carolo Wilhelmina Braunschweig, Braunschweig Integrated Ctr Syst Biol BRICS, D-38106 Braunschweig, Germany
[7] Cedars Sinai Med Ctr, Dept Surg, Los Angeles, CA 90048 USA
[8] Cedars Sinai Med Ctr, Dept Biomed Sci, Los Angeles, CA 90048 USA
[9] Univ Calif Los Angeles, Dept Med, Los Angeles, CA 90095 USA
[10] Cedars Sinai Med Ctr, Samuel Oschin Comprehens Canc Inst, Los Angeles, CA 90048 USA
[11] Ga Cheon Univ, Dept Urol, Coll Med, Incheon 22212, South Korea
基金
美国国家卫生研究院;
关键词
BIOMARKERS; ACYLCARNITINES; IDENTIFICATION; DATABASE; BLADDER; LIPIDOMICS; LIBRARY; CANCER; URINE;
D O I
10.1021/acs.analchem.8b04698
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Urine metabolites are used in many clinical and biomedical studies but usually only for a few classic compounds. Metabolomics detects vastly more metabolic signals that may be used to precisely define the health status of individuals. However, many compounds remain unidentified, hampering biochemical conclusions. Here, we annotate all metabolites detected by two untargeted metabolomic assays, hydrophilic interaction chromatography (HILIC)-Q Exactive HF mass spectrometry and charged surface hybrid (CSH)-Q Exactive HF mass spectrometry. Over 9,000 unique metabolite signals were detected, of which 42% triggered MS/MS fragmentations in data-dependent mode. On the highest Metabolomics Standards Initiative (MSI) confidence level 1, we identified 175 compounds using authentic standards with precursor mass, retention time, and MS/MS matching. An additional 578 compounds were annotated by precursor accurate mass and MS/MS matching alone, MSI level 2, including a novel library specifically geared at acylcarnitines (CarniBlast). The rest of the metabolome is usually left unannotated. To fill this gap, we used the in silico fragmentation tool CSI:FingerID and the new NIST hybrid search to annotate all further compounds (MSI level 3). Testing the top-ranked metabolites in CSI:Finger ID annotations yielded 40% accuracy when applied to the MSI level 1 identified compounds. We classified all MSI level 3 annotations by the NIST hybrid search using the ClassyFire ontology into 21 superclasses that were further distinguished into 184 chemical classes. ClassyFire annotations showed that the previously unannotated urine metabolome consists of 28% derivatives of organic acids, 16% heterocyclics, and 16% lipids as major classes.
引用
收藏
页码:2155 / 2162
页数:8
相关论文
共 48 条
[1]   CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra [J].
Allen, Felicity ;
Pon, Allison ;
Wilson, Michael ;
Greiner, Russ ;
Wishart, David .
NUCLEIC ACIDS RESEARCH, 2014, 42 (W1) :W94-W99
[2]   Biomarkers in lower urinary tract symptoms/overactive bladder: a critical overview [J].
Antunes-Lopes, Tiago ;
Cruz, Celia D. ;
Cruz, Francisco ;
Sievert, Karl D. .
CURRENT OPINION IN UROLOGY, 2014, 24 (04) :352-357
[3]   Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets [J].
Barupal, Dinesh Kumar ;
Fiehn, Oliver .
SCIENTIFIC REPORTS, 2017, 7
[4]   Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time-Ion Mobility Mass Spectrometry [J].
Blazenovic, Ivana ;
Shen, Tong ;
Mehta, Sajjan S. ;
Kind, Tobias ;
Ji, Jian ;
Piparo, Marco ;
Cacciola, Francesco ;
Mondello, Luigi ;
Fiehn, Oliver .
ANALYTICAL CHEMISTRY, 2018, 90 (18) :10758-10764
[5]   Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics [J].
Blazenovic, Ivana ;
Kind, Tobias ;
Ji, Jian ;
Fiehn, Oliver .
METABOLITES, 2018, 8 (02)
[6]   Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is needed to achieve 93% accuracy [J].
Blazenovic, Ivana ;
Kind, Tobias ;
Torbasinovic, Hrvoje ;
Obrenovic, Slobodan ;
Mehta, Sajjan S. ;
Tsugawa, Hiroshi ;
Wermuth, Tobias ;
Schauer, Nicolas ;
Jahn, Martina ;
Biedendieck, Rebekka ;
Jahn, Dieter ;
Fiehn, Oliver .
JOURNAL OF CHEMINFORMATICS, 2017, 9
[7]  
Bloszies Clayton S., 2018, Current Opinion in Toxicology, V8, P87, DOI 10.1016/j.cotox.2018.03.002
[8]   The Human Urine Metabolome [J].
Bouatra, Souhaila ;
Aziat, Farid ;
Mandal, Rupasri ;
Guo, An Chi ;
Wilson, Michael R. ;
Knox, Craig ;
Bjorndahl, Trent C. ;
Krishnamurthy, Ramanarayan ;
Saleem, Fozia ;
Liu, Philip ;
Dame, Zerihun T. ;
Poelzer, Jenna ;
Huynh, Jessica ;
Yallou, Faizath S. ;
Psychogios, Nick ;
Dong, Edison ;
Bogumil, Ralf ;
Roehring, Cornelia ;
Wishart, David S. .
PLOS ONE, 2013, 8 (09)
[9]   The Hybrid Search: A Mass Spectral Library Search Method for Discovery of Modifications in Proteomics [J].
Burke, Meghan C. ;
Mirokhin, Yuri A. ;
Tchekhovskoi, Dmitrii V. ;
Markey, Sanford P. ;
Thompson, Jenny Heidbrink ;
Larkin, Christopher ;
Stein, Stephen E. .
JOURNAL OF PROTEOME RESEARCH, 2017, 16 (05) :1924-1935
[10]   Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography-High-Resolution Mass Spectrometry Platforms [J].
Cajka, Tomas ;
Smilowitz, Jennifer T. ;
Fiehn, Oliver .
ANALYTICAL CHEMISTRY, 2017, 89 (22) :12360-12368