The nonlocal mean-field equation on an interval

被引:3
作者
DelaTorre, Azahara [1 ]
Hyder, Ali [2 ]
Martinazzi, Luca [3 ]
Sire, Yannick [4 ]
机构
[1] Albert Ludwigs Univ Freiburg, Freiburg, Germany
[2] Univ British Columbia, Vancouver, BC, Canada
[3] Univ Padua, Padua, Italy
[4] Johns Hopkins Univ, Baltimore, MD USA
基金
瑞士国家科学基金会;
关键词
Mean field and Liouville equation; nonlocal equations; existence of solutions; bubbling phenomena; TRUDINGER-TYPE INEQUALITY; BLOW-UP ANALYSIS; STATISTICAL-MECHANICS; ASYMPTOTIC-BEHAVIOR; ELLIPTIC EQUATION; EXISTENCE; DIMENSION;
D O I
10.1142/S0219199719500287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the fractional mean-field equation on the interval I = (-1, 1) (-Delta)(1/2) u = rho e(u)/integral(I)e(u) dx, subject to Dirichlet boundary conditions, and prove that existence holds if and only if rho < 2 pi. This requires the study of blowing-up sequences of solutions. We provide a series of tools in particular which can be used (and extended) to higher-order mean field equations of nonlocal type.
引用
收藏
页数:19
相关论文
共 29 条
[1]  
Baraket S, 1998, CALC VAR PARTIAL DIF, V6, P1
[2]  
Blumenthal R. M., 1961, Transactions of the American Mathematical Society, V99, P540, DOI DOI 10.2307/1993561
[3]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[4]   A SPECIAL-CLASS OF STATIONARY FLOWS FOR 2-DIMENSIONAL EULER EQUATIONS - A STATISTICAL-MECHANICS DESCRIPTION [J].
CAGLIOTI, E ;
LIONS, PL ;
MARCHIORO, C ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 143 (03) :501-525
[5]  
Chen W., 2017, PREPRINT
[6]  
Da Lio F, 2017, CALC VAR PARTIAL DIF, V56, DOI 10.1007/s00526-017-1245-2
[7]   BLOW-UP ANALYSIS OF A NONLOCAL LIOUVILLE-TYPE EQUATION [J].
Da Lio, Francesca ;
Martinazzi, Luca ;
Riviere, Tristan .
ANALYSIS & PDE, 2015, 8 (07) :1757-1805
[8]   Existence results for mean field equations [J].
Ding, WY ;
Jost, J ;
Li, JY ;
Wang, GF .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (05) :653-666
[9]   Existence result for the mean field problem on Riemann surfaces of all genuses [J].
Djadli, Zindine .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (02) :205-220
[10]  
Druet O., 2017, PREPRINT