Implications of all season Arctic sea-ice anomalies on the stratosphere

被引:16
作者
Cai, D. [1 ]
Dameris, M. [1 ]
Garny, H. [1 ]
Runde, T. [1 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
关键词
NORTH-ATLANTIC SST; CLIMATE MODEL; LAGRANGIAN TRANSPORT; ATMOSPHERIC RESPONSE; WINTER CIRCULATION; PART II; OSCILLATION; CHEMISTRY; SIMULATIONS; TEMPERATURE;
D O I
10.5194/acp-12-11819-2012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study the impact of a substantially reduced Arctic sea-ice cover on the lower and middle stratosphere is investigated. For this purpose two simulations with fixed boundary conditions (the so-called time-slice mode) were performed with a Chemistry-Climate Model. A reference time-slice with boundary conditions representing the year 2000 is compared to a second sensitivity simulation in which the boundary conditions are identical apart from the polar sea-ice cover, which is set to represent the years 2089-2099. Three features of Arctic air temperature response have been identified which are discussed in detail. Firstly, tropospheric mean polar temperatures increase up to 7K during winter. This warming is primarily driven by changes in outgoing long-wave radiation. The tropospheric response (e. g. geopotential height anomaly) is in reasonable agreement with similar studies dealing with Arctic sea-ice decrease and the consequences on the troposphere. Secondly, temperatures decrease significantly in the summer stratosphere caused by a decline in outgoing short-wave radiation, accompanied by a slight increase of ozone mixing ratios. Thirdly, there are short periods of statistical significant temperature anomalies in the winter stratosphere probably driven by modified planetary wave activity, but generally there is no clear stratospheric response. The Arctic Oscillation (AO)-index, which is related to the troposphere-stratosphere coupling favours a more neutral state during winter. The only clear stratospheric response can be shown during November. Significant changes in Arctic temperature, meridional eddy heat fluxes and the Arctic Oscillation (AO)-index are detected. In this study the overall stratospheric response to the prescribed sea-ice anomaly is small compared to the tropospheric changes.
引用
收藏
页码:11819 / 11831
页数:13
相关论文
共 63 条
[1]   THE ROLE OF SEA ICE AND OTHER FRESH-WATER IN THE ARCTIC CIRCULATION [J].
AAGAARD, K ;
CARMACK, EC .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1989, 94 (C10) :14485-14498
[2]  
Alexander MA, 2004, J CLIMATE, V17, P890, DOI 10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO
[3]  
2
[4]  
[Anonymous], 2007, Global Ozone Research and Monitoring Project - Report No.50, V50, P572
[5]  
[Anonymous], 2011, Scientific Assessment of Ozone Depletion: 2010, P516
[6]  
[Anonymous], 1974, INSTRUMENT GOVT
[7]   The solar cycle and stratosphere-troposphere dynamical coupling [J].
Baldwin, MP ;
Dunkerton, TJ .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2005, 67 (1-2) :71-82
[8]   Stratospheric harbingers of anomalous weather regimes [J].
Baldwin, MP ;
Dunkerton, TJ .
SCIENCE, 2001, 294 (5542) :581-584
[9]  
Black RX, 2002, J CLIMATE, V15, P268, DOI 10.1175/1520-0442(2002)015<0268:SFOSCI>2.0.CO
[10]  
2