Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice

被引:33
作者
Lee, Sangho [1 ]
Kim, Minjung [1 ]
Lim, Wonchung [2 ]
Kim, Taeyoung [1 ]
Kang, Chounghun [1 ,3 ]
机构
[1] Hankuk Univ Foreign Studies, Dept Phys Educ, Seoul 130791, South Korea
[2] Cheongju Univ, Coll Hlth Sci, Dept Sports Med, Chongju 363764, South Korea
[3] Univ Minnesota Twin Cities, Sch Kinesiol, Lab Physiol Hyg & Exercise Sci, Minneapolis, MN 55455 USA
关键词
Mitochondria; Inflammation; Exercise; Redox signals; Skeletal muscle; NF-KAPPA-B; OXIDATIVE STRESS; COACTIVATOR PGC-1; BIOGENESIS; PGC-1-ALPHA; DYSFUNCTION; ADAPTATIONS; RESTRICTION; MECHANISMS; FISSION;
D O I
10.1016/j.bbrc.2015.04.038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Strenuous exercise is known to cause excessive ROS generation and inflammation. However, the mechanisms responsible for the regulation of mitochondrial integrity in the senescent muscle during high-intensity exercise (HE) are not well studied. Here, we show that HE suppresses up-regulation of mitochondrial function despite increase in mitochondrial copy number, following excessive ROS production, proinflammatory cytokines and NF kappa B activation. Moreover, HE in the old group resulted in the decreasing of both fusion (Mfn2) and fission (Drp1) proteins that may contribute to alteration of mitochondrial morphology. This study suggests that strenuous exercise does not reverse age-related mitochondrial damage and dysfunction by the increased ROS and inflammation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:354 / 360
页数:7
相关论文
共 38 条
[1]   The p65 subunit of NF-κB binds to PGC-1α, linking inflammation and metabolic disturbances in cardiac cells [J].
Alvarez-Guardia, David ;
Palomer, Xavier ;
Coll, Teresa ;
Davidson, Mercy M. ;
Chan, Tung O. ;
Feldman, Arthur M. ;
Laguna, Juan C. ;
Vazquez-Carrera, Manuel .
CARDIOVASCULAR RESEARCH, 2010, 87 (03) :449-458
[2]   Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1 [J].
Baar, K ;
Wende, AR ;
Jones, TE ;
Marison, M ;
Nolte, LA ;
Chen, M ;
Kelly, DP ;
Holloszy, JO .
FASEB JOURNAL, 2002, 16 (14) :1879-1886
[3]   Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice [J].
Bonnard, Charlotte ;
Durand, Annie ;
Peyrol, Simone ;
Chanseaume, Emilie ;
Chauvin, Marie-Agnes ;
Morio, Beatrice ;
Vidal, Hubert ;
Rieusset, Jennifer .
JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (02) :789-800
[4]   The role of mitochondria in aging [J].
Bratic, Ana ;
Larsson, Nils-Goran .
JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (03) :951-957
[5]   Mitochondrial fusion and fission in mammals [J].
Chan, David C. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2006, 22 :79-99
[6]   Calorie restriction increases muscle mitochondrial biogenesis in healthy humans [J].
Civitarese, Anthony E. ;
Carling, Stacy ;
Heilbronn, Leonie K. ;
Hulver, Mathew H. ;
Ukropcova, Barbara ;
Deutsch, Walter A. ;
Smith, Steven R. ;
Ravussin, Eric .
PLOS MEDICINE, 2007, 4 (03) :485-494
[7]   The Peroxisome Proliferator-activated Receptor γ Coactivator 1 α/β (PGC-1) Coactivators Repress the Transcriptional Activity of NF-κB in Skeletal Muscle Cells [J].
Eisele, Petra S. ;
Salatino, Silvia ;
Sobek, Jens ;
Hottiger, Michael O. ;
Handschin, Christoph .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (04) :2246-2260
[8]   Oxidants, oxidative stress and the biology of ageing [J].
Finkel, T ;
Holbrook, NJ .
NATURE, 2000, 408 (6809) :239-247
[9]   Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance [J].
Gomez-Cabrera, Mari-Carmen ;
Domenech, Elena ;
Romagnoli, Marco ;
Arduini, Alessandro ;
Borras, Consuelo ;
Pallardo, Federico V. ;
Sastre, Juan ;
Vina, Jose .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2008, 87 (01) :142-149
[10]   Apoptosis in the aging process [J].
Higami, Y ;
Shimokawa, I .
CELL AND TISSUE RESEARCH, 2000, 301 (01) :125-132