Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes

被引:188
作者
Chen, Ke [1 ]
Pathak, Rajesh [1 ]
Gurung, Ashim [1 ]
Adhamash, Ezaldeen A. [1 ]
Bahrami, Behzad [1 ]
He, Qingquan [1 ]
Qiao, Hui [1 ,2 ]
Smirnova, Alevtina L. [3 ]
Wu, James J. [4 ]
Qiao, Qiquan [1 ]
Zhou, Yue [1 ]
机构
[1] South Dakota State Univ, Ctr Adv Photovolta & Sustainable Energy, Dept Elect Engn & Comp Sci, Brookings, SD 57007 USA
[2] Jiangnan Univ, Key Lab Ecotext, Minist Educ, Wuxi 214122, Peoples R China
[3] South Dakota Sch Mines & Technol, Dept Chem & Appl Biol Sci, Rapid City, SD 57701 USA
[4] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA
基金
中国博士后科学基金;
关键词
Li3N; Lithium metal anode; Artificial SEI layer; N-2; plasma; ELECTROLYTE INTERPHASE LAYER; CYCLING STABILITY; HIGH-ENERGY; LI3N; ION; CHALLENGES; BATTERIES; COST; SEI;
D O I
10.1016/j.ensm.2019.02.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Unstable solid electrolyte interphase (SEI) layer formation and uncontrolled lithium (Li) dendrites growth are two major obstacles that hinder the application of Li metal as the anode in Li batteries. To solve these problems, a multifunctional protective layer was designed for the first time using N-2 plasma activation of the Li metal. A highly [001] oriented and flower shaped Li3N layer was obtained on the surface of Li metal with a plasma activation time less than 5 min. Due to high Young's modulus (48 GPa) and high ionic conductivity (5.02 x 10(-1) mS cm(-1)), this unique protective layer can physically block the direct contact between reactive Li metal and the liquid organic electrolyte, and suppress the Li dendrites formation. It gives rise to a stable voltage profile with plating/stripping for 30,000 min in a symmetric cell. For Li/LCO full cell, the plasma activated Li3N electrode shows better capacity retention of more than 96% and higher capacity at a 5 C rate compared to bare Li anode. This plasma activation strategy provides a facile, scalable and efficient approach to realize a safe Li metal battery with superior electrochemical performance.
引用
收藏
页码:389 / 396
页数:8
相关论文
共 46 条
[1]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[2]   LI3N - PROMISING LI IONIC CONDUCTOR [J].
ALPEN, UV .
JOURNAL OF SOLID STATE CHEMISTRY, 1979, 29 (03) :379-392
[3]  
Assegie AA, 2018, NANOSCALE, V10, P6125, DOI [10.1039/c7nr09058g, 10.1039/C7NR09058G]
[4]   Variations on Li3N protective coating using ex-situ and in-situ techniques for Li° in sulphur batteries [J].
Baloch, Marya ;
Shanmukaraj, Devaraj ;
Bondarchuk, Oleksandr ;
Bekaert, Emilie ;
Rojo, Teofilo ;
Armand, Michel .
ENERGY STORAGE MATERIALS, 2017, 9 :141-149
[5]   Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode [J].
Bieker, Georg ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :8670-8679
[6]   LITHIUM ION CONDUCTIVITY IN LITHIUM NITRIDE [J].
BOUKAMP, BA ;
HUGGINS, RA .
PHYSICS LETTERS A, 1976, 58 (04) :231-233
[7]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[8]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[9]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[10]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895