Multibubble sonoluminescence as a tool to study the mechanism of formic acid sonolysis

被引:4
作者
Navarro, Nathalie M. [1 ]
Pflieger, Rachel [2 ]
Nikitenko, Sergey I. [2 ]
机构
[1] CEA, DEN, MAR, DRCP,SCPS,LPCP,Ctr Marcoule, F-30207 Bagnols Sur Ceze, France
[2] CEA, CNRS, UM2, ENSCM,ICSM,UMR 5257,Ctr Marcoule, F-30207 Bagnols Sur Ceze, France
关键词
Sono luminescence; Sonochemistry; Swan band; Formic acid; Ultrasound; CAVITATION; EMISSION; C-2;
D O I
10.1016/j.ultsonch.2013.11.010
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Sonoluminescence spectra collected from 0.1 to 3.0 M aqueous solutions of formic acid sparged with argon show the OH(A(2)Sigma(+)-X-2 Pi(i)) and C-2(d(3)Pi(g) -> a(3)Pi) emission bands and a broad continuum typical for multibubble sonoluminescence. The overall intensity of sonoluminescence and the sonochemical yield of HCOOH degradation vary in opposite directions: the sonoluminescence is quenched while the sonochemical yield increases with HCOOH concentration. By contrast, the concentration of formic acid has a relatively small effect on the intensity of C-2 Swan band. It is concluded that C-2 emission originates from CO produced by HCOOH degradation rather than from direct sonochemical degradation of HCOOH. The intensity of C-2 band is much stronger at high ultrasonic frequency compared to 20 kHz ultrasound which is in line with higher yields of CO at high frequency. Another product of HCOOH sonolysis, carbon dioxide, strongly quenches sonoluminescence, most probably via collisional non-radiative mechanism. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1026 / 1029
页数:4
相关论文
共 18 条
[1]  
[Anonymous], 1974, The Spectroscopy of Flames
[2]   ACOUSTIC-EMISSION AND SONOLUMINESCENCE DUE TO CAVITATION AT THE BEAM FOCUS OF AN ELECTROHYDRAULIC SHOCK-WAVE LITHOTRIPTER [J].
COLEMAN, AJ ;
CHOI, MJ ;
SAUNDERS, JE ;
LEIGHTON, TG .
ULTRASOUND IN MEDICINE AND BIOLOGY, 1992, 18 (03) :267-281
[3]   Hot spot conditions during cavitation in water [J].
Didenko, YT ;
McNamara, WB ;
Suslick, KS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (24) :5817-5818
[4]   THE TEMPERATURE OF CAVITATION [J].
FLINT, EB ;
SUSLICK, KS .
SCIENCE, 1991, 253 (5026) :1397-1399
[5]  
Fridman A., 2008, PLASMA CHEM
[6]  
Ito T., 1963, Journal of Chemical Engineering Data, V8, P315, DOI [10.1021/je60018a012, DOI 10.1021/JE60018A012]
[7]   Control of sonoluminescence signal in deionized water using carbon dioxide [J].
Kumari, S. ;
Keswani, M. ;
Singh, S. ;
Beck, M. ;
Liebscher, E. ;
Deymier, P. ;
Raghavan, S. .
MICROELECTRONIC ENGINEERING, 2011, 88 (12) :3437-3441
[8]  
Mason T. J., 2002, APPL SONOCHEMISTRY U, P0, DOI [10.1533/9781782420620, DOI 10.1533/9781782420620]
[9]   Effect of Ultrasonic Frequency on the Mechanism of Formic Acid Sonolysis [J].
Navarro, Nathalie M. ;
Chave, Tony ;
Pochon, Patrick ;
Bisel, Isabelle ;
Nikitenko, Sergey I. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (09) :2024-2029
[10]   The Origin of Isotope Effects in Sonoluminescence Spectra of Heavy and Light Water [J].
Ndiaye, Abdoul Aziz ;
Pflieger, Rachel ;
Siboulet, Bertrand ;
Nikitenko, Sergey I. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (09) :2478-2481